IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47370-w.html
   My bibliography  Save this article

Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment

Author

Listed:
  • Nikhil Bharambe

    (Nanyang Technological University)

  • Zhuowen Li

    (Nanyang Technological University)

  • David Seiferth

    (University of Oxford)

  • Asha Manikkoth Balakrishna

    (Nanyang Technological University)

  • Philip C. Biggin

    (University of Oxford)

  • Sandip Basak

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

GLIC, a proton-activated prokaryotic ligand-gated ion channel, served as a model system for understanding the eukaryotic counterparts due to their structural and functional similarities. Despite extensive studies conducted on GLIC, the molecular mechanism of channel gating in the lipid environment requires further investigation. Here, we present the cryo-EM structures of nanodisc-reconstituted GLIC at neutral and acidic pH in the resolution range of 2.6 – 3.4 Å. In our apo state at pH 7.5, the extracellular domain (ECD) displays conformational variations compared to the existing apo structures. At pH 4.0, three distinct conformational states (C1, C2 and O states) are identified. The protonated structures exhibit a compacted and counter-clockwise rotated ECD compared with our apo state. A gradual widening of the pore in the TMD is observed upon reducing the pH, with the widest pore in O state, accompanied by several layers of water pentagons. The pore radius and molecular dynamics (MD) simulations suggest that the O state represents an open conductive state. We also observe state-dependent interactions between several lipids and proteins that may be involved in the regulation of channel gating. Our results provide comprehensive insights into the importance of lipids impact on gating.

Suggested Citation

  • Nikhil Bharambe & Zhuowen Li & David Seiferth & Asha Manikkoth Balakrishna & Philip C. Biggin & Sandip Basak, 2024. "Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47370-w
    DOI: 10.1038/s41467-024-47370-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47370-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47370-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc Gielen & Philip Thomas & Trevor G. Smart, 2015. "The desensitization gate of inhibitory Cys-loop receptors," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    2. Arvind Kumar & Sandip Basak & Shanlin Rao & Yvonne Gicheru & Megan L. Mayer & Mark S. P. Sansom & Sudha Chakrapani, 2020. "Mechanisms of activation and desensitization of full-length glycine receptor in lipid nanodiscs," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Ghérici Hassaine & Cédric Deluz & Luigino Grasso & Romain Wyss & Menno B. Tol & Ruud Hovius & Alexandra Graff & Henning Stahlberg & Takashi Tomizaki & Aline Desmyter & Christophe Moreau & Xiao-Dan Li , 2014. "X-ray structure of the mouse serotonin 5-HT3 receptor," Nature, Nature, vol. 512(7514), pages 276-281, August.
    4. Sandip Basak & Yvonne Gicheru & Shanlin Rao & Mark S. P. Sansom & Sudha Chakrapani, 2018. "Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT3A receptor," Nature, Nature, vol. 563(7730), pages 270-274, November.
    5. Ricarda J. C. Hilf & Raimund Dutzler, 2008. "X-ray structure of a prokaryotic pentameric ligand-gated ion channel," Nature, Nature, vol. 452(7185), pages 375-379, March.
    6. Juan Du & Wei Lü & Shenping Wu & Yifan Cheng & Eric Gouaux, 2015. "Glycine receptor mechanism elucidated by electron cryo-microscopy," Nature, Nature, vol. 526(7572), pages 224-229, October.
    7. Nicolas Bocquet & Hugues Nury & Marc Baaden & Chantal Le Poupon & Jean-Pierre Changeux & Marc Delarue & Pierre-Jean Corringer, 2009. "X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation," Nature, Nature, vol. 457(7225), pages 111-114, January.
    8. Vikram Babu Kasaragod & Martin Mortensen & Steven W. Hardwick & Ayla A. Wahid & Valentina Dorovykh & Dimitri Y. Chirgadze & Trevor G. Smart & Paul S. Miller, 2022. "Mechanisms of inhibition and activation of extrasynaptic αβ GABAA receptors," Nature, Nature, vol. 602(7897), pages 529-533, February.
    9. Ryan E. Hibbs & Eric Gouaux, 2011. "Principles of activation and permeation in an anion-selective Cys-loop receptor," Nature, Nature, vol. 474(7349), pages 54-60, June.
    10. Paul S. Miller & A. Radu Aricescu, 2014. "Crystal structure of a human GABAA receptor," Nature, Nature, vol. 512(7514), pages 270-275, August.
    11. Alexandru Zabara & Josephine Tse Yin Chong & Isabelle Martiel & Laura Stark & Brett A. Cromer & Chiara Speziale & Calum John Drummond & Raffaele Mezzenga, 2018. "Design of ultra-swollen lipidic mesophases for the crystallization of membrane proteins with large extracellular domains," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    12. Vikram Dalal & Mark J. Arcario & John T. Petroff & Brandon K. Tan & Noah M. Dietzen & Michael J. Rau & James A. J. Fitzpatrick & Grace Brannigan & Wayland W. L. Cheng, 2024. "Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "Author Correction: GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 566(7744), pages 8-8, February.
    14. John T. Petroff & Noah M. Dietzen & Ezry Santiago-McRae & Brett Deng & Maya S. Washington & Lawrence J. Chen & K. Trent Moreland & Zengqin Deng & Michael Rau & James A. J. Fitzpatrick & Peng Yuan & Th, 2022. "Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Yingyi Zhang & Patricia M. Dijkman & Rongfeng Zou & Martina Zandl-Lang & Ricardo M. Sanchez & Luise Eckhardt-Strelau & Harald Köfeler & Horst Vogel & Shuguang Yuan & Mikhail Kudryashev, 2021. "Asymmetric opening of the homopentameric 5-HT3A serotonin receptor in lipid bilayers," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    16. Sandip Basak & Yvonne Gicheru & Amrita Samanta & Sudheer Kumar Molugu & Wei Huang & Maria la de Fuente & Taylor Hughes & Derek J. Taylor & Marvin T. Nieman & Vera Moiseenkova-Bell & Sudha Chakrapani, 2018. "Cryo-EM structure of 5-HT3A receptor in its resting conformation," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    17. Simonas Masiulis & Rooma Desai & Tomasz Uchański & Itziar Serna Martin & Duncan Laverty & Dimple Karia & Tomas Malinauskas & Jasenko Zivanov & Els Pardon & Abhay Kotecha & Jan Steyaert & Keith W. Mill, 2019. "GABAA receptor signalling mechanisms revealed by structural pharmacology," Nature, Nature, vol. 565(7740), pages 454-459, January.
    18. Won Yong Lee & Steven M. Sine, 2005. "Principal pathway coupling agonist binding to channel gating in nicotinic receptors," Nature, Nature, vol. 438(7065), pages 243-247, November.
    19. Ludovic Sauguet & Rebecca J. Howard & Laurie Malherbe & Ui S. Lee & Pierre-Jean Corringer & R. Adron Harris & Marc Delarue, 2013. "Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    20. Ricarda J. C. Hilf & Raimund Dutzler, 2009. "Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel," Nature, Nature, vol. 457(7225), pages 115-118, January.
    21. Nicolas Bocquet & Lia Prado de Carvalho & Jean Cartaud & Jacques Neyton & Chantal Le Poupon & Antoine Taly & Thomas Grutter & Jean-Pierre Changeux & Pierre-Jean Corringer, 2007. "A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family," Nature, Nature, vol. 445(7123), pages 116-119, January.
    22. Lucie Polovinkin & Ghérici Hassaine & Jonathan Perot & Emmanuelle Neumann & Anders A. Jensen & Solène N. Lefebvre & Pierre-Jean Corringer & Jacques Neyton & Christophe Chipot & Francois Dehez & Guy S, 2018. "Conformational transitions of the serotonin 5-HT3 receptor," Nature, Nature, vol. 563(7730), pages 275-279, November.
    23. Eric Gibbs & Emily Klemm & David Seiferth & Arvind Kumar & Serban L. Ilca & Philip C. Biggin & Sudha Chakrapani, 2023. "Conformational transitions and allosteric modulation in a heteromeric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    24. Hugues Nury & Catherine Van Renterghem & Yun Weng & Alphonso Tran & Marc Baaden & Virginie Dufresne & Jean-Pierre Changeux & James M. Sonner & Marc Delarue & Pierre-Jean Corringer, 2011. "X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel," Nature, Nature, vol. 469(7330), pages 428-431, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arvind Kumar & Kayla Kindig & Shanlin Rao & Afroditi-Maria Zaki & Sandip Basak & Mark S. P. Sansom & Philip C. Biggin & Sudha Chakrapani, 2022. "Structural basis for cannabinoid-induced potentiation of alpha1-glycine receptors in lipid nanodiscs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Eric Gibbs & Emily Klemm & David Seiferth & Arvind Kumar & Serban L. Ilca & Philip C. Biggin & Sudha Chakrapani, 2023. "Conformational transitions and allosteric modulation in a heteromeric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Xiaofen Liu & Weiwei Wang, 2023. "Asymmetric gating of a human hetero-pentameric glycine receptor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. John T. Petroff & Noah M. Dietzen & Ezry Santiago-McRae & Brett Deng & Maya S. Washington & Lawrence J. Chen & K. Trent Moreland & Zengqin Deng & Michael Rau & James A. J. Fitzpatrick & Peng Yuan & Th, 2022. "Open-channel structure of a pentameric ligand-gated ion channel reveals a mechanism of leaflet-specific phospholipid modulation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Vikram Dalal & Mark J. Arcario & John T. Petroff & Brandon K. Tan & Noah M. Dietzen & Michael J. Rau & James A. J. Fitzpatrick & Grace Brannigan & Wayland W. L. Cheng, 2024. "Lipid nanodisc scaffold and size alter the structure of a pentameric ligand-gated ion channel," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Dagimhiwat H. Legesse & Chen Fan & Jinfeng Teng & Yuxuan Zhuang & Rebecca J. Howard & Colleen M. Noviello & Erik Lindahl & Ryan E. Hibbs, 2023. "Structural insights into opposing actions of neurosteroids on GABAA receptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Vasyl Bondarenko & Marta M. Wells & Qiang Chen & Tommy S. Tillman & Kevin Singewald & Matthew J. Lawless & Joel Caporoso & Nicole Brandon & Jonathan A. Coleman & Sunil Saxena & Erik Lindahl & Yan Xu &, 2022. "Structures of highly flexible intracellular domain of human α7 nicotinic acetylcholine receptor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Mackenzie J. Thompson & Farid Mansoub Bekarkhanechi & Anna Ananchenko & Hugues Nury & John E. Baenziger, 2024. "A release of local subunit conformational heterogeneity underlies gating in a muscle nicotinic acetylcholine receptor," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Marie S. Prevost & Nathalie Barilone & Gabrielle Dejean de la Bâtie & Stéphanie Pons & Gabriel Ayme & Patrick England & Marc Gielen & François Bontems & Gérard Pehau-Arnaudet & Uwe Maskos & Pierre , 2023. "An original potentiating mechanism revealed by the cryo-EM structures of the human α7 nicotinic receptor in complex with nanobodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Maegan M Weltzin & Andrew A George & Ronald J Lukas & Paul Whiteaker, 2021. "Sleep-related hypermotor epilepsy associated mutations uncover important kinetic roles of α4β2- nicotinic acetylcholine receptor intracellular structures," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-38, March.
    11. David Mowrey & Qiang Chen & Yuhe Liang & Jie Liang & Yan Xu & Pei Tang, 2013. "Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    12. Heng Liu & Dapeng Sun & Alexander Myasnikov & Marjorie Damian & Jean-Louis Baneres & Ji Sun & Cheng Zhang, 2021. "Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Shaotong Zhu & Akshay Sridhar & Jinfeng Teng & Rebecca J. Howard & Erik Lindahl & Ryan E. Hibbs, 2022. "Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Nathan L. Absalom & Vivian W. Y. Liao & Katrine M. H. Johannesen & Elena Gardella & Julia Jacobs & Gaetan Lesca & Zeynep Gokce-Samar & Alexis Arzimanoglou & Shimriet Zeidler & Pasquale Striano & Pierr, 2022. "Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Kurt T Laha & Borna Ghosh & Cynthia Czajkowski, 2013. "Macroscopic Kinetics of Pentameric Ligand Gated Ion Channels: Comparisons between Two Prokaryotic Channels and One Eukaryotic Channel," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
    16. Emma Rie Olander & Dieter Janzen & Carmen Villmann & Anders A Jensen, 2020. "Comparison of biophysical properties of α1β2 and α3β2 GABAA receptors in whole-cell patch-clamp electrophysiological recordings," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-13, June.
    17. Steven J Tobin & Eliedonna E Cacao & Daniel Wing Wo Hong & Lars Terenius & Vladana Vukojevic & Tijana Jovanovic-Talisman, 2014. "Nanoscale Effects of Ethanol and Naltrexone on Protein Organization in the Plasma Membrane Studied by Photoactivated Localization Microscopy (PALM)," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-7, February.
    18. T. Bertie Ansell & Wanling Song & Claire E. Coupland & Loic Carrique & Robin A. Corey & Anna L. Duncan & C. Keith Cassidy & Maxwell M. G. Geurts & Tim Rasmussen & Andrew B. Ward & Christian Siebold & , 2023. "LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Grace D. Galles & Daniel T. Infield & Colin J. Clark & Marcus L. Hemshorn & Shivani Manikandan & Frederico Fazan & Ali Rasouli & Emad Tajkhorshid & Jason D. Galpin & Richard B. Cooley & Ryan A. Mehl &, 2023. "Tuning phenylalanine fluorination to assess aromatic contributions to protein function and stability in cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Nazia Hussain & Ashish Apotikar & Shabareesh Pidathala & Sourajit Mukherjee & Ananth Prasad Burada & Sujit Kumar Sikdar & Kutti R. Vinothkumar & Aravind Penmatsa, 2024. "Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47370-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.