IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v564y2018i7734d10.1038_s41586-018-0752-4.html
   My bibliography  Save this article

Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming

Author

Listed:
  • Luke D. Trusel

    (Rowan University
    Woods Hole Oceanographic Institution)

  • Sarah B. Das

    (Woods Hole Oceanographic Institution)

  • Matthew B. Osman

    (Massachusetts Institute of Technology/Woods Hole Oceanographic Institution)

  • Matthew J. Evans

    (Wheaton College)

  • Ben E. Smith

    (University of Washington)

  • Xavier Fettweis

    (University of Liège)

  • Joseph R. McConnell

    (Desert Research Institute)

  • Brice P. Y. Noël

    (Utrecht University)

  • Michiel R. Broeke

    (Utrecht University)

Abstract

The Greenland ice sheet (GrIS) is a growing contributor to global sea-level rise1, with recent ice mass loss dominated by surface meltwater runoff2,3. Satellite observations reveal positive trends in GrIS surface melt extent4, but melt variability, intensity and runoff remain uncertain before the satellite era. Here we present the first continuous, multi-century and observationally constrained record of GrIS surface melt intensity and runoff, revealing that the magnitude of recent GrIS melting is exceptional over at least the last 350 years. We develop this record through stratigraphic analysis of central west Greenland ice cores, and demonstrate that measurements of refrozen melt layers in percolation zone ice cores can be used to quantifiably, and reproducibly, reconstruct past melt rates. We show significant (P

Suggested Citation

  • Luke D. Trusel & Sarah B. Das & Matthew B. Osman & Matthew J. Evans & Ben E. Smith & Xavier Fettweis & Joseph R. McConnell & Brice P. Y. Noël & Michiel R. Broeke, 2018. "Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming," Nature, Nature, vol. 564(7734), pages 104-108, December.
  • Handle: RePEc:nat:nature:v:564:y:2018:i:7734:d:10.1038_s41586-018-0752-4
    DOI: 10.1038/s41586-018-0752-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0752-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0752-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    2. Jonathon R. Preece & Thomas L. Mote & Judah Cohen & Lori J. Wachowicz & John A. Knox & Marco Tedesco & Gabriel J. Kooperman, 2023. "Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Sandra Gschnaller, 2020. "The albedo loss from the melting of the Greenland ice sheet and the social cost of carbon," Climatic Change, Springer, vol. 163(4), pages 2201-2231, December.
    4. Brice Noël & Jan T. M. Lenaerts & William H. Lipscomb & Katherine Thayer-Calder & Michiel R. Broeke, 2022. "Peak refreezing in the Greenland firn layer under future warming scenarios," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Francis X. Diebold & Glenn D. Rudebusch, 2019. "Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model Projections," PIER Working Paper Archive 19-021, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:564:y:2018:i:7734:d:10.1038_s41586-018-0752-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.