IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v544y2017i7648d10.1038_nature21727.html
   My bibliography  Save this article

Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

Author

Listed:
  • Richard J. Bomphrey

    (Structure and Motion Laboratory, Royal Veterinary College, University of London)

  • Toshiyuki Nakata

    (Structure and Motion Laboratory, Royal Veterinary College, University of London
    Graduate School of Engineering, Chiba University)

  • Nathan Phillips

    (Structure and Motion Laboratory, Royal Veterinary College, University of London)

  • Simon M. Walker

    (University of Oxford)

Abstract

In addition to generating lift by leading-edge vortices (as used by most insects), mosquitoes also employ trailing-edge vortices and a lift mechanism from wing rotation, which enables them to stay airborne despite having a seemingly unlikely airframe.

Suggested Citation

  • Richard J. Bomphrey & Toshiyuki Nakata & Nathan Phillips & Simon M. Walker, 2017. "Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight," Nature, Nature, vol. 544(7648), pages 92-95, April.
  • Handle: RePEc:nat:nature:v:544:y:2017:i:7648:d:10.1038_nature21727
    DOI: 10.1038/nature21727
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature21727
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature21727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    2. Guoqiang, Li & Shihe, Yi, 2020. "Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator," Energy, Elsevier, vol. 212(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:544:y:2017:i:7648:d:10.1038_nature21727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.