IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v534y2016i7609d10.1038_nature18591.html
   My bibliography  Save this article

The Asian monsoon over the past 640,000 years and ice age terminations

Author

Listed:
  • Hai Cheng

    (Institute of Global Environmental Change, Xi’an Jiaotong University
    University of Minnesota)

  • R. Lawrence Edwards

    (University of Minnesota)

  • Ashish Sinha

    (California State University)

  • Christoph Spötl

    (Institut für Geologie, Universität Innsbruck)

  • Liang Yi

    (State Key Laboratory of Marine Geology, Tongji University)

  • Shitao Chen

    (College of Geography Science, Nanjing Normal University)

  • Megan Kelly

    (University of Minnesota)

  • Gayatri Kathayat

    (Institute of Global Environmental Change, Xi’an Jiaotong University)

  • Xianfeng Wang

    (Earth Observatory of Singapore, Nanyang Technological University)

  • Xianglei Li

    (Institute of Global Environmental Change, Xi’an Jiaotong University)

  • Xinggong Kong

    (College of Geography Science, Nanjing Normal University)

  • Yongjin Wang

    (College of Geography Science, Nanjing Normal University)

  • Youfeng Ning

    (Institute of Global Environmental Change, Xi’an Jiaotong University)

  • Haiwei Zhang

    (Institute of Global Environmental Change, Xi’an Jiaotong University)

Abstract

Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record’s length and temporal precision allow us to test the idea that insolation changes caused by the Earth’s precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record’s timing, the terminations are separated by four or five precession cycles, supporting the idea that the ‘100,000-year’ ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and ‘unfinished terminations’.

Suggested Citation

  • Hai Cheng & R. Lawrence Edwards & Ashish Sinha & Christoph Spötl & Liang Yi & Shitao Chen & Megan Kelly & Gayatri Kathayat & Xianfeng Wang & Xianglei Li & Xinggong Kong & Yongjin Wang & Youfeng Ning &, 2016. "The Asian monsoon over the past 640,000 years and ice age terminations," Nature, Nature, vol. 534(7609), pages 640-646, June.
  • Handle: RePEc:nat:nature:v:534:y:2016:i:7609:d:10.1038_nature18591
    DOI: 10.1038/nature18591
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature18591
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature18591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Ao & Eelco J. Rohling & Ran Zhang & Andrew P. Roberts & Ann E. Holbourn & Jean-Baptiste Ladant & Guillaume Dupont-Nivet & Wolfgang Kuhnt & Peng Zhang & Feng Wu & Mark J. Dekkers & Qingsong Liu & , 2021. "Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Yukun Zheng & Hongyan Liu & Huan Yang & Hongya Wang & Wenjie Zhao & Zeyu Zhang & Miao Huang & Weihang Liu, 2022. "Decoupled Asian monsoon intensity and precipitation during glacial-interglacial transitions on the Chinese Loess Plateau," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yiping Yang & Lanlan Zhang & Liang Yi & Fuchang Zhong & Zhengyao Lu & Sui Wan & Yan Du & Rong Xiang, 2023. "A contracting Intertropical Convergence Zone during the Early Heinrich Stadial 1," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Ye Tian & Dominik Fleitmann & Qiong Zhang & Lijuan Sha & Jasper. A. Wassenburg & Josefine Axelsson & Haiwei Zhang & Xianglei Li & Jun Hu & Hanying Li & Liang Zhao & Yanjun Cai & Youfeng Ning & Hai Che, 2023. "Holocene climate change in southern Oman deciphered by speleothem records and climate model simulations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xusheng Li & Yuwen Zhou & Zhiyong Han & Xiaokang Yuan & Shuangwen Yi & Yuqiang Zeng & Lisha Qin & Ming Lu & Huayu Lu, 2024. "Loess deposits in the low latitudes of East Asia reveal the ~20-kyr precipitation cycle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Kevin T. Wright & Kathleen R. Johnson & Gabriela Serrato Marks & David McGee & Tripti Bhattacharya & Gregory R. Goldsmith & Clay R. Tabor & Jean-Louis Lacaille-Muzquiz & Gianna Lum & Laura Beramendi-O, 2023. "Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. F. Held & H. Cheng & R. L. Edwards & O. Tüysüz & K. Koç & D. Fleitmann, 2024. "Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Krapp, Mario & Beyer, Robert & Edmundson, Stephen L. & Valdes, Paul J & Manica, Andrea, 2019. "A comprehensive climate history of the last 800 thousand years," Earth Arxiv d5hfx, Center for Open Science.
    9. Hongwei Li & Xiaoping Yang & Louis Anthony Scuderi & Fangen Hu & Peng Liang & Qida Jiang & Jan-Pieter Buylaert & Xulong Wang & Jinhua Du & Shugang Kang & Zhibang Ma & Lisheng Wang & Xuefeng Wang, 2023. "East Gobi megalake systems reveal East Asian Monsoon dynamics over the last interglacial-glacial cycle," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Junsheng Nie & Weihang Wang & Richard Heermance & Peng Gao & Li Xing & Xiaojian Zhang & Ran Zhang & Carmala Garzione & Wenjiao Xiao, 2022. "Late Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:534:y:2016:i:7609:d:10.1038_nature18591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.