IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31577-w.html
   My bibliography  Save this article

Late Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening

Author

Listed:
  • Junsheng Nie

    (Lanzhou University
    Chinese Academy of Sciences)

  • Weihang Wang

    (Lanzhou University)

  • Richard Heermance

    (California State University)

  • Peng Gao

    (Lanzhou University)

  • Li Xing

    (Lanzhou University)

  • Xiaojian Zhang

    (Nanjing University)

  • Ran Zhang

    (Chinese Academy of Sciences)

  • Carmala Garzione

    (Rochester Institute of Technology)

  • Wenjiao Xiao

    (Chinese Academy of Sciences)

Abstract

Periodic wetting is an inherent feature of many monsoon marginal region deserts. Previous studies consistently demonstrate desert wetting during times of Earth’s high orbital eccentricity and strong summer monsoon. Here we report the first evidence demonstrating desert wetting during Earth’s low orbital eccentricity from the late Miocene strata of the northwestern Tarim Basin of northern China, which is commonly thought to be beyond the range of Asian monsoon precipitation. Using mechanisms for modern Tarim wetting as analogs, we propose that East Asian summer monsoon weakening enhanced westward moisture transport and caused opposite desert wetting pattern to that observed in monsoon marginal region deserts. This inference is supported by our model simulations. This result has far-reaching implications for understanding environmental variations in non-monsoonal deserts in the next few thousands of years under high atmospheric CO2 content and low eccentricity.

Suggested Citation

  • Junsheng Nie & Weihang Wang & Richard Heermance & Peng Gao & Li Xing & Xiaojian Zhang & Ran Zhang & Carmala Garzione & Wenjiao Xiao, 2022. "Late Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31577-w
    DOI: 10.1038/s41467-022-31577-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31577-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31577-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hai Cheng & R. Lawrence Edwards & Ashish Sinha & Christoph Spötl & Liang Yi & Shitao Chen & Megan Kelly & Gayatri Kathayat & Xianfeng Wang & Xianglei Li & Xinggong Kong & Yongjin Wang & Youfeng Ning &, 2016. "The Asian monsoon over the past 640,000 years and ice age terminations," Nature, Nature, vol. 534(7609), pages 640-646, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Ao & Eelco J. Rohling & Ran Zhang & Andrew P. Roberts & Ann E. Holbourn & Jean-Baptiste Ladant & Guillaume Dupont-Nivet & Wolfgang Kuhnt & Peng Zhang & Feng Wu & Mark J. Dekkers & Qingsong Liu & , 2021. "Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Hongwei Li & Xiaoping Yang & Louis Anthony Scuderi & Fangen Hu & Peng Liang & Qida Jiang & Jan-Pieter Buylaert & Xulong Wang & Jinhua Du & Shugang Kang & Zhibang Ma & Lisheng Wang & Xuefeng Wang, 2023. "East Gobi megalake systems reveal East Asian Monsoon dynamics over the last interglacial-glacial cycle," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Kevin T. Wright & Kathleen R. Johnson & Gabriela Serrato Marks & David McGee & Tripti Bhattacharya & Gregory R. Goldsmith & Clay R. Tabor & Jean-Louis Lacaille-Muzquiz & Gianna Lum & Laura Beramendi-O, 2023. "Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Ye Tian & Dominik Fleitmann & Qiong Zhang & Lijuan Sha & Jasper. A. Wassenburg & Josefine Axelsson & Haiwei Zhang & Xianglei Li & Jun Hu & Hanying Li & Liang Zhao & Yanjun Cai & Youfeng Ning & Hai Che, 2023. "Holocene climate change in southern Oman deciphered by speleothem records and climate model simulations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xusheng Li & Yuwen Zhou & Zhiyong Han & Xiaokang Yuan & Shuangwen Yi & Yuqiang Zeng & Lisha Qin & Ming Lu & Huayu Lu, 2024. "Loess deposits in the low latitudes of East Asia reveal the ~20-kyr precipitation cycle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Yiping Yang & Lanlan Zhang & Liang Yi & Fuchang Zhong & Zhengyao Lu & Sui Wan & Yan Du & Rong Xiang, 2023. "A contracting Intertropical Convergence Zone during the Early Heinrich Stadial 1," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. F. Held & H. Cheng & R. L. Edwards & O. Tüysüz & K. Koç & D. Fleitmann, 2024. "Dansgaard-Oeschger cycles of the penultimate and last glacial period recorded in stalagmites from Türkiye," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Yukun Zheng & Hongyan Liu & Huan Yang & Hongya Wang & Wenjie Zhao & Zeyu Zhang & Miao Huang & Weihang Liu, 2022. "Decoupled Asian monsoon intensity and precipitation during glacial-interglacial transitions on the Chinese Loess Plateau," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Krapp, Mario & Beyer, Robert & Edmundson, Stephen L. & Valdes, Paul J & Manica, Andrea, 2019. "A comprehensive climate history of the last 800 thousand years," Earth Arxiv d5hfx, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31577-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.