IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v534y2016i7606d10.1038_nature17653.html
   My bibliography  Save this article

Strongly correlated perovskite fuel cells

Author

Listed:
  • You Zhou

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • Xiaofei Guan

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • Hua Zhou

    (Advanced Photon Source, Argonne National Laboratory)

  • Koushik Ramadoss

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • Suhare Adam

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University)

  • Huajun Liu

    (Argonne National Laboratory)

  • Sungsik Lee

    (Advanced Photon Source, Argonne National Laboratory)

  • Jian Shi

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    Rensselaer Polytechnic Institute)

  • Masaru Tsuchiya

    (SiEnergy Systems, Cambridge)

  • Dillon D. Fong

    (Argonne National Laboratory)

  • Shriram Ramanathan

    (John A. Paulson School of Engineering and Applied Sciences, Harvard University
    School of Materials Engineering, Purdue University)

Abstract

A fundamentally different approach to designing solid oxide electrolytes is presented, using a phase transition to suppress electronic conduction in a correlated perovskite nickelate; this yields ionic conductivity comparable to the best-performing solid electrolytes in the same temperature range.

Suggested Citation

  • You Zhou & Xiaofei Guan & Hua Zhou & Koushik Ramadoss & Suhare Adam & Huajun Liu & Sungsik Lee & Jian Shi & Masaru Tsuchiya & Dillon D. Fong & Shriram Ramanathan, 2016. "Strongly correlated perovskite fuel cells," Nature, Nature, vol. 534(7606), pages 231-234, June.
  • Handle: RePEc:nat:nature:v:534:y:2016:i:7606:d:10.1038_nature17653
    DOI: 10.1038/nature17653
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature17653
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature17653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neda Alsadat Aghamiri & Guangwei Hu & Alireza Fali & Zhen Zhang & Jiahan Li & Sivacarendran Balendhran & Sumeet Walia & Sharath Sriram & James H. Edgar & Shriram Ramanathan & Andrea Alù & Yohannes Aba, 2022. "Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Rauf, Sajid & Yousaf, Muhammad & Asghar, Muhammad Imran & Lund, Peter D. & Zhu, Bin, 2022. "Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells," Renewable Energy, Elsevier, vol. 196(C), pages 901-911.
    3. Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Yousaf, Muhammad & Akbar, Nabeela & Xia, Chen & Yun, Sining & Zhu, Bin, 2023. "Semiconductor-membrane fuel cell (SMFC) for renewable energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:534:y:2016:i:7606:d:10.1038_nature17653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.