IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v530y2016i7589d10.1038_nature16932.html
   My bibliography  Save this article

Naturally occurring p16Ink4a-positive cells shorten healthy lifespan

Author

Listed:
  • Darren J. Baker

    (Mayo Clinic College of Medicine)

  • Bennett G. Childs

    (Mayo Clinic College of Medicine)

  • Matej Durik

    (Mayo Clinic College of Medicine)

  • Melinde E. Wijers

    (Mayo Clinic College of Medicine)

  • Cynthia J. Sieben

    (Mayo Clinic College of Medicine)

  • Jian Zhong

    (Mayo Clinic College of Medicine)

  • Rachel A. Saltness

    (Mayo Clinic College of Medicine)

  • Karthik B. Jeganathan

    (Mayo Clinic College of Medicine)

  • Grace Casaclang Verzosa

    (Mayo Clinic College of Medicine)

  • Abdulmohammad Pezeshki

    (Mayo Clinic College of Medicine)

  • Khashayarsha Khazaie

    (Mayo Clinic College of Medicine)

  • Jordan D. Miller

    (Mayo Clinic College of Medicine)

  • Jan M. van Deursen

    (Mayo Clinic College of Medicine
    Mayo Clinic College of Medicine)

Abstract

Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16Ink4a (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16Ink4a-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16Ink4a-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16Ink4a-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.

Suggested Citation

  • Darren J. Baker & Bennett G. Childs & Matej Durik & Melinde E. Wijers & Cynthia J. Sieben & Jian Zhong & Rachel A. Saltness & Karthik B. Jeganathan & Grace Casaclang Verzosa & Abdulmohammad Pezeshki &, 2016. "Naturally occurring p16Ink4a-positive cells shorten healthy lifespan," Nature, Nature, vol. 530(7589), pages 184-189, February.
  • Handle: RePEc:nat:nature:v:530:y:2016:i:7589:d:10.1038_nature16932
    DOI: 10.1038/nature16932
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature16932
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature16932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Gorshkov, Vyacheslav & Privman, Vladimir & Libert, Sergiy, 2016. "Lattice percolation approach to 3D modeling of tissue aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 207-216.
    3. Ines Sturmlechner & Chance C. Sine & Karthik B. Jeganathan & Cheng Zhang & Raul O. Fierro Velasco & Darren J. Baker & Hu Li & Jan M. Deursen, 2022. "Senescent cells limit p53 activity via multiple mechanisms to remain viable," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Toshiyuki Ko & Seitaro Nomura & Shintaro Yamada & Kanna Fujita & Takanori Fujita & Masahiro Satoh & Chio Oka & Manami Katoh & Masamichi Ito & Mikako Katagiri & Tatsuro Sassa & Bo Zhang & Satoshi Hatsu, 2022. "Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Cox, Lynne S., 2022. "Therapeutic approaches to treat and prevent age-related diseases through understanding the underlying biological drivers of ageing," The Journal of the Economics of Ageing, Elsevier, vol. 23(C).
    6. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Yinsheng Wu & Lixu Tang & Han Huang & Qi Yu & Bicheng Hu & Gang Wang & Feng Ge & Tailang Yin & Shanshan Li & Xilan Yu, 2023. "Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Imanol Duran & Joaquim Pombo & Bin Sun & Suchira Gallage & Hiromi Kudo & Domhnall McHugh & Laura Bousset & Jose Efren Barragan Avila & Roberta Forlano & Pinelopi Manousou & Mathias Heikenwalder & Domi, 2024. "Detection of senescence using machine learning algorithms based on nuclear features," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Damien Maggiorani & Oanh Le & Véronique Lisi & Séverine Landais & Gaël Moquin-Beaudry & Vincent Philippe Lavallée & Hélène Decaluwe & Christian Beauséjour, 2024. "Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Moh’d Mohanad Al-Dabet & Khurrum Shahzad & Ahmed Elwakiel & Alba Sulaj & Stefan Kopf & Fabian Bock & Ihsan Gadi & Silke Zimmermann & Rajiv Rana & Shruthi Krishnan & Dheerendra Gupta & Jayakumar Manoha, 2022. "Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Madison L. Doolittle & Dominik Saul & Japneet Kaur & Jennifer L. Rowsey & Stephanie J. Vos & Kevin D. Pavelko & Joshua N. Farr & David G. Monroe & Sundeep Khosla, 2023. "Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Xu Zhang & Vesselina M. Pearsall & Chase M. Carver & Elizabeth J. Atkinson & Benjamin D. S. Clarkson & Ethan M. Grund & Michelle Baez-Faria & Kevin D. Pavelko & Jennifer M. Kachergus & Thomas A. White, 2022. "Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Carlos Anerillas & Allison B. Herman & Rachel Munk & Amanda Garrido & Kwan-Wood Gabriel Lam & Matthew J. Payea & Martina Rossi & Dimitrios Tsitsipatis & Jennifer L. Martindale & Yulan Piao & Krystyna , 2022. "A BDNF-TrkB autocrine loop enhances senescent cell viability," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Jie Sun & Ming Wang & Yaqi Zhong & Xuan Ma & Shimin Sun & Chenzhong Xu & Linyuan Peng & Guo Li & Liting Zhang & Zuojun Liu & Ding Ai & Baohua Liu, 2022. "A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-aged mice," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:530:y:2016:i:7589:d:10.1038_nature16932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.