IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7008d10.1038_nature02945.html
   My bibliography  Save this article

Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga

Author

Listed:
  • Sinéad Collins

    (McGill University)

  • Graham Bell

    (McGill University)

Abstract

Estimates of the effect of increasing atmospheric CO2 concentrations on future global plant production rely on the physiological response of individual plants or plant communities when exposed to high CO2 (refs 1-6). Plant populations may adapt to the changing atmosphere, however, such that the evolved plant communities of the next century are likely to be genetically different from contemporary communities7,8,9,10,11,12. The properties of these future communities are unknown, introducing a bias of unknown sign and magnitude into projections of global carbon pool dynamics. Here we report a long-term selection experiment to investigate the phenotypic consequences of selection for growth at elevated CO2 concentrations. After about 1,000 generations, selection lines of the unicellular green alga Chlamydomonas failed to evolve specific adaptation to a CO2 concentration of 1,050 parts per million. Some lines, however, evolved a syndrome involving high rates of photosynthesis and respiration, combined with higher chlorophyll content and reduced cell size. These lines also grew poorly at ambient concentrations of CO2. We tentatively attribute this outcome to the accumulation of conditionally neutral mutations in genes affecting the carbon concentration mechanism.

Suggested Citation

  • Sinéad Collins & Graham Bell, 2004. "Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga," Nature, Nature, vol. 431(7008), pages 566-569, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7008:d:10.1038_nature02945
    DOI: 10.1038/nature02945
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02945
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hinners, Jana & Hense, Inga & Kremp, Anke, 2019. "Modelling phytoplankton adaptation to global warming based on resurrection experiments," Ecological Modelling, Elsevier, vol. 400(C), pages 27-33.
    2. Narita, Daiju & Rehdanz, Katrin & Tol, Richard S. J., 2011. "Economic Costs of Ocean Acidification: A Look into the Impacts on Shellfish Production," Papers WP391, Economic and Social Research Institute (ESRI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7008:d:10.1038_nature02945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.