IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6846d10.1038_35087601.html
   My bibliography  Save this article

Practising orientation identification improves orientation coding in V1 neurons

Author

Listed:
  • Aniek Schoups

    (Laboratorium voor Neuro-en Psychofysiologie, K.U. Leuven Medical School)

  • Rufin Vogels

    (Laboratorium voor Neuro-en Psychofysiologie, K.U. Leuven Medical School)

  • Ning Qian

    (Columbia University)

  • Guy Orban

    (Laboratorium voor Neuro-en Psychofysiologie, K.U. Leuven Medical School)

Abstract

The adult brain shows remarkable plasticity, as demonstrated by the improvement in fine sensorial discriminations after intensive practice. The behavioural aspects of such perceptual learning are well documented, especially in the visual system1,2,3,4,5,6,7,8. Specificity for stimulus attributes clearly implicates an early cortical site, where receptive fields retain fine selectivity for these attributes; however, the neuronal correlates of a simple visual discrimination task remained unidentified. Here we report electrophysiological correlates in the primary visual cortex (V1) of monkeys for learning orientation identification. We link the behavioural improvement in this type of learning to an improved neuronal performance of trained compared to naive neurons. Improved long-term neuronal performance resulted from changes in the characteristics of orientation tuning of individual neurons. More particularly, the slope of the orientation tuning curve that was measured at the trained orientation increased only for the subgroup of trained neurons most likely to code the orientation identified by the monkey. No modifications of the tuning curve were observed for orientations for which the monkey had not been trained. Thus training induces a specific and efficient increase in neuronal sensitivity in V1.

Suggested Citation

  • Aniek Schoups & Rufin Vogels & Ning Qian & Guy Orban, 2001. "Practising orientation identification improves orientation coding in V1 neurons," Nature, Nature, vol. 412(6846), pages 549-553, August.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6846:d:10.1038_35087601
    DOI: 10.1038/35087601
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35087601
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35087601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiashu Liu & Yingtian He & Andreanne Lavoie & Guy Bouvier & Bao-hua Liu, 2023. "A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    2. Jeyadarshan Jeyabalaratnam & Vishal Bharmauria & Lyes Bachatene & Sarah Cattan & Annie Angers & Stéphane Molotchnikoff, 2013. "Adaptation Shifts Preferred Orientation of Tuning Curve in the Mouse Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    3. Stefanie Duyck & Hans Op de Beeck, 2019. "An investigation of far and near transfer in a gamified visual learning paradigm," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-23, December.
    4. Gesa Lange & Eric Lowet & Mark J Roberts & Peter De Weerd, 2018. "Within-quadrant position and orientation specificity after extensive orientation discrimination learning is related to performance gains during late learning," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-37, September.
    5. Ari S. Benjamin & Ling-Qi Zhang & Cheng Qiu & Alan A. Stocker & Konrad P. Kording, 2022. "Efficient neural codes naturally emerge through gradient descent learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6846:d:10.1038_35087601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.