IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v9y2025i5d10.1038_s41562-025-02149-x.html
   My bibliography  Save this article

A neural geometry approach comprehensively explains apparently conflicting models of visual perceptual learning

Author

Listed:
  • Yu-Ang Cheng

    (Shanghai Jiao Tong University School of Medicine and School of Psychology
    Brown University)

  • Mehdi Sanayei

    (Framlington Place
    Institute for Research in Fundamental Sciences)

  • Xing Chen

    (University of Pittsburgh)

  • Ke Jia

    (Zhejiang University School of Medicine
    Zhejiang University
    Zhejiang University)

  • Sheng Li

    (Peking University
    Peking University
    Peking University)

  • Fang Fang

    (Peking University
    Peking University
    Peking University
    Peking University)

  • Takeo Watanabe

    (Brown University)

  • Alexander Thiele

    (Framlington Place)

  • Ru-Yuan Zhang

    (Shanghai Jiao Tong University School of Medicine and School of Psychology)

Abstract

Visual perceptual learning (VPL), defined as long-term improvement in a visual task, is considered a crucial tool for elucidating underlying visual and brain plasticity. Previous studies have proposed several neural models of VPL, including changes in neural tuning or in noise correlations. Here, to adjudicate different models, we propose that all neural changes at single units can be conceptualized as geometric transformations of population response manifolds in a high-dimensional neural space. Following this neural geometry approach, we identified neural manifold shrinkage due to reduced trial-by-trial population response variability, rather than tuning or correlation changes, as the primary mechanism of VPL. Furthermore, manifold shrinkage successfully explains VPL effects across artificial neural responses in deep neural networks, multivariate blood-oxygenation-level-dependent signals in humans and multiunit activities in monkeys. These converging results suggest that our neural geometry approach comprehensively explains a wide range of empirical results and reconciles previously conflicting models of VPL.

Suggested Citation

  • Yu-Ang Cheng & Mehdi Sanayei & Xing Chen & Ke Jia & Sheng Li & Fang Fang & Takeo Watanabe & Alexander Thiele & Ru-Yuan Zhang, 2025. "A neural geometry approach comprehensively explains apparently conflicting models of visual perceptual learning," Nature Human Behaviour, Nature, vol. 9(5), pages 1023-1040, May.
  • Handle: RePEc:nat:nathum:v:9:y:2025:i:5:d:10.1038_s41562-025-02149-x
    DOI: 10.1038/s41562-025-02149-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-025-02149-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-025-02149-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Diego A. Gutnisky & Valentin Dragoi, 2008. "Adaptive coding of visual information in neural populations," Nature, Nature, vol. 452(7184), pages 220-224, March.
    3. Ru-Yuan Zhang & Xue-Xin Wei & Kendrick Kay, 2020. "Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-29, August.
    4. Mehdi Sanayei & Xing Chen & Daniel Chicharro & Claudia Distler & Stefano Panzeri & Alexander Thiele, 2018. "Perceptual learning of fine contrast discrimination changes neuronal tuning and population coding in macaque V4," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    5. Olivier J. Hénaff & Yoon Bai & Julie A. Charlton & Ian Nauhaus & Eero P. Simoncelli & Robbe L. T. Goris, 2021. "Primary visual cortex straightens natural video trajectories," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Aniek Schoups & Rufin Vogels & Ning Qian & Guy Orban, 2001. "Practising orientation identification improves orientation coding in V1 neurons," Nature, Nature, vol. 412(6846), pages 549-553, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Consorti & Gabriele Sansevero & Irene Marco & Silvia Floridia & Elena Novelli & Nicoletta Berardi & Alessandro Sale, 2024. "An essential role for the latero-medial secondary visual cortex in the acquisition and retention of visual perceptual learning in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    3. Wensheng Sun & Dennis L Barbour, 2017. "Rate, not selectivity, determines neuronal population coding accuracy in auditory cortex," PLOS Biology, Public Library of Science, vol. 15(11), pages 1-22, November.
    4. Jean-Paul Noel & Edoardo Balzani & Cristina Savin & Dora E. Angelaki, 2024. "Context-invariant beliefs are supported by dynamic reconfiguration of single unit functional connectivity in prefrontal cortex of male macaques," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Ari S. Benjamin & Ling-Qi Zhang & Cheng Qiu & Alan A. Stocker & Konrad P. Kording, 2022. "Efficient neural codes naturally emerge through gradient descent learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Geoffrey Terral & Evan Harrell & Gabriel Lepousez & Yohan Wards & Dinghuang Huang & Tiphaine Dolique & Giulio Casali & Antoine Nissant & Pierre-Marie Lledo & Guillaume Ferreira & Giovanni Marsicano & , 2024. "Endogenous cannabinoids in the piriform cortex tune olfactory perception," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. repec:plo:pcbi00:1003415 is not listed on IDEAS
    8. Christopher F. Angeloni & Wiktor Młynarski & Eugenio Piasini & Aaron M. Williams & Katherine C. Wood & Linda Garami & Ann M. Hermundstad & Maria N. Geffen, 2023. "Dynamics of cortical contrast adaptation predict perception of signals in noise," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Rava Azeredo da Silveira & Michael J Berry II, 2014. "High-Fidelity Coding with Correlated Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-25, November.
    10. Arno Onken & Valentin Dragoi & Klaus Obermayer, 2012. "A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    11. Elaine Tring & Mario Dipoppa & Dario L. Ringach, 2023. "A power law describes the magnitude of adaptation in neural populations of primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Jiashu Liu & Yingtian He & Andreanne Lavoie & Guy Bouvier & Bao-hua Liu, 2023. "A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    13. Vikranth R Bejjanki & Rava Azeredo da Silveira & Jonathan D Cohen & Nicholas B Turk-Browne, 2017. "Noise correlations in the human brain and their impact on pattern classification," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-23, August.
    14. Gesa Lange & Eric Lowet & Mark J Roberts & Peter De Weerd, 2018. "Within-quadrant position and orientation specificity after extensive orientation discrimination learning is related to performance gains during late learning," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-37, September.
    15. Ingmar Kanitscheider & Ruben Coen-Cagli & Adam Kohn & Alexandre Pouget, 2015. "Measuring Fisher Information Accurately in Correlated Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-27, June.
    16. Ari E. Kahn & Karol Szymula & Sophie Loman & Edda B. Haggerty & Nathaniel Nyema & Geoffrey K. Aguirre & Dani S. Bassett, 2025. "Network structure influences the strength of learned neural representations," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    17. Antonino Greco & Julia Moser & Hubert Preissl & Markus Siegel, 2024. "Predictive learning shapes the representational geometry of the human brain," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Stefanie Duyck & Hans Op de Beeck, 2019. "An investigation of far and near transfer in a gamified visual learning paradigm," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-23, December.
    19. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Jerome Carriot & Graham McAllister & Hamed Hooshangnejad & Isabelle Mackrous & Kathleen E. Cullen & Maurice J. Chacron, 2022. "Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    21. Ru-Yuan Zhang & Xue-Xin Wei & Kendrick Kay, 2020. "Understanding multivariate brain activity: Evaluating the effect of voxelwise noise correlations on population codes in functional magnetic resonance imaging," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-29, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:9:y:2025:i:5:d:10.1038_s41562-025-02149-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.