IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i10d10.1038_s41893-023-01147-z.html
   My bibliography  Save this article

A two-stage strategy for upcycling chlorine-contaminated plastic waste

Author

Listed:
  • Pavel A. Kots

    (University of Delaware)

  • Brandon C. Vance

    (University of Delaware
    University of Delaware)

  • Caitlin M. Quinn

    (University of Delaware)

  • Cong Wang

    (University of Delaware)

  • Dionisios G. Vlachos

    (University of Delaware
    University of Delaware)

Abstract

Chemical upcycling of polyolefin plastic waste to lubricant, wax and fuel-range hydrocarbons over metal-based catalysts is a crucial technological solution to the enormous environmental threat posed by plastic waste. However, currently available methods are incompatible with chlorine-contaminated feedstocks. Here we report a two-stage strategy for upcycling chlorine-contaminated polypropylene. First, magnesia–alumina mixed oxide at 30 bar H2 and 250 °C serves as a chlorine trap by rapidly forming solid chloride, resulting in nearly complete chlorine extraction from the polyolefin melt. This enables the upcycling of plastic waste with up to 10% polyvinyl chloride content to lubricants over ruthenium-based catalysts, in the second stage. The strategy is also applicable to chlorinated aromatics and alkanes. The proposed strategy renders hydrocracking and hydrogenolysis catalysts less sensitive to the chlorine impurities in feedstocks while eliminating HCl emissions and chlorine contamination in products. It could incentivize further progress in plastics upcycling.

Suggested Citation

  • Pavel A. Kots & Brandon C. Vance & Caitlin M. Quinn & Cong Wang & Dionisios G. Vlachos, 2023. "A two-stage strategy for upcycling chlorine-contaminated plastic waste," Nature Sustainability, Nature, vol. 6(10), pages 1258-1267, October.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:10:d:10.1038_s41893-023-01147-z
    DOI: 10.1038/s41893-023-01147-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-023-01147-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-023-01147-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pavel A. Kots & Tianjun Xie & Brandon C. Vance & Caitlin M. Quinn & Matheus Dorneles Mello & J. Anibal Boscoboinik & Cong Wang & Pawan Kumar & Eric A. Stach & Nebojsa S. Marinkovic & Lu Ma & Steven N., 2022. "Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Park, Ki-Bum & Oh, Seung-Jin & Begum, Guzelciftci & Kim, Joo-Sik, 2018. "Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride," Energy, Elsevier, vol. 157(C), pages 402-411.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    2. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    3. Zhuo Xu & Victor Ierulli & Ezra Bar-Ziv & Armando G. McDonald, 2022. "Thermal Degradation and Organic Chlorine Removal from Mixed Plastic Wastes," Energies, MDPI, vol. 15(16), pages 1-14, August.
    4. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2022. "Kinetics and characteristics of activator-assisted pyrolysis of municipal waste plastic and chlorine removal using hot filter filled with absorbents," Energy, Elsevier, vol. 238(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:10:d:10.1038_s41893-023-01147-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.