IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v2y2019i8d10.1038_s41893-019-0325-z.html
   My bibliography  Save this article

Deeper well drilling an unsustainable stopgap to groundwater depletion

Author

Listed:
  • Debra Perrone

    (University of California at Santa Barbara)

  • Scott Jasechko

    (University of California at Santa Barbara)

Abstract

Groundwater depletion is causing wells to run dry, affecting food production and domestic water access. Drilling deeper wells may stave off the drying up of wells—for those who can afford it and where hydrogeologic conditions permit it—yet the frequency of deeper drilling is unknown. Here, we compile 11.8 million groundwater-well locations, depths and purposes across the United States. We show that typical wells are being constructed deeper 1.4 to 9.2 times more often than they are being constructed shallower. Well deepening is not ubiquitous in all areas where groundwater levels are declining, implying that shallow wells are vulnerable to running dry should groundwater depletion continue. We conclude that widespread deeper well drilling represents an unsustainable stopgap to groundwater depletion that is limited by socioeconomic conditions, hydrogeology and groundwater quality.

Suggested Citation

  • Debra Perrone & Scott Jasechko, 2019. "Deeper well drilling an unsustainable stopgap to groundwater depletion," Nature Sustainability, Nature, vol. 2(8), pages 773-782, August.
  • Handle: RePEc:nat:natsus:v:2:y:2019:i:8:d:10.1038_s41893-019-0325-z
    DOI: 10.1038/s41893-019-0325-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-019-0325-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-019-0325-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melissa Thaw & Merhawi GebreEgziabher & Jobel Y. Villafañe-Pagán & Scott Jasechko, 2022. "Modern groundwater reaches deeper depths in heavily pumped aquifer systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    3. Merhawi GebreEgziabher & Scott Jasechko & Debra Perrone, 2022. "Widespread and increased drilling of wells into fossil aquifers in the USA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:2:y:2019:i:8:d:10.1038_s41893-019-0325-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.