IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v8y2023i4d10.1038_s41560-023-01221-y.html
   My bibliography  Save this article

From laboratory innovations to materials manufacturing for lithium-based batteries

Author

Listed:
  • Jie Xiao

    (Pacific Northwest National Laboratory
    University of Washington)

  • Feifei Shi

    (Penn State University)

  • Tobias Glossmann

    (Mercedes-Benz Research and Development North America, Inc)

  • Christopher Burnett

    (Thermo Fisher Scientific)

  • Zhao Liu

    (Thermo Fisher Scientific)

Abstract

While great progress has been witnessed in unlocking the potential of new battery materials in the laboratory, further stepping into materials and components manufacturing requires us to identify and tackle scientific challenges from very different viewpoints. It is not uncommon that practical considerations prove insurmountable after scientists make promising discoveries in the laboratory. Herein, we discuss the knowledge gap between materials research and cost-effective materials scale-up for further industry manufacturing. From a few grams of materials synthesis in the laboratory to kilograms and tons of mass production, there are many blind spots in terms of yields, impurities and quality control in which materials science can play a key role but is overlooked. With a focus on next-generation lithium ion and lithium metal batteries, we briefly review challenges and opportunities in scaling up lithium-based battery materials and components to accelerate future low-cost battery manufacturing.

Suggested Citation

  • Jie Xiao & Feifei Shi & Tobias Glossmann & Christopher Burnett & Zhao Liu, 2023. "From laboratory innovations to materials manufacturing for lithium-based batteries," Nature Energy, Nature, vol. 8(4), pages 329-339, April.
  • Handle: RePEc:nat:natene:v:8:y:2023:i:4:d:10.1038_s41560-023-01221-y
    DOI: 10.1038/s41560-023-01221-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-023-01221-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-023-01221-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gogwon Choe & Hyungsub Kim & Jaesub Kwon & Woochul Jung & Kyu-Young Park & Yong-Tae Kim, 2024. "Re-evaluation of battery-grade lithium purity toward sustainable batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:8:y:2023:i:4:d:10.1038_s41560-023-01221-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.