IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v5y2020i2d10.1038_s41560-020-0562-4.html
   My bibliography  Save this article

Event-based models to understand the scale of the impact of extremes

Author

Listed:
  • Christian Otto

    (Potsdam Institute for Climate Impact Research)

  • Franziska Piontek

    (Potsdam Institute for Climate Impact Research)

  • Matthias Kalkuhl

    (Mercator Research Institute on Global Commons and Climate Change (MCC)
    University of Potsdam, Faculty of Economic and Social Sciences)

  • Katja Frieler

    (Potsdam Institute for Climate Impact Research)

Abstract

Climate change entails an intensification of extreme weather events that can potentially trigger socioeconomic and energy system disruptions. As we approach 1 °C of global warming we should start learning from historical extremes and explicitly incorporate such events in integrated climate–economy and energy systems models.

Suggested Citation

  • Christian Otto & Franziska Piontek & Matthias Kalkuhl & Katja Frieler, 2020. "Event-based models to understand the scale of the impact of extremes," Nature Energy, Nature, vol. 5(2), pages 111-114, February.
  • Handle: RePEc:nat:natene:v:5:y:2020:i:2:d:10.1038_s41560-020-0562-4
    DOI: 10.1038/s41560-020-0562-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-020-0562-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-020-0562-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongxiang Liu & Hongmei Zhao & Guangying Zhao & Xinyuan Cao & Xuelei Zhang & Aijun Xiu, 2023. "Estimates of Dust Emissions and Organic Carbon Losses Induced by Wind Erosion in Farmland Worldwide from 2017 to 2021," Agriculture, MDPI, vol. 13(4), pages 1-15, March.
    2. Arnaud Mignan & Matteo Spada & Peter Burgherr & Ziqi Wang & Didier Sornette, 2022. "Dynamics of severe accidents in the oil & gas energy sector derived from the authoritative ENergy-related severe accident database," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-14, February.
    3. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:5:y:2020:i:2:d:10.1038_s41560-020-0562-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.