IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i11d10.1038_s41560-018-0232-y.html
   My bibliography  Save this article

Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase

Author

Listed:
  • Katarzyna P. Sokol

    (University of Cambridge)

  • William E. Robinson

    (University of Cambridge)

  • Julien Warnan

    (University of Cambridge)

  • Nikolay Kornienko

    (University of Cambridge)

  • Marc M. Nowaczyk

    (Ruhr-Universität Bochum)

  • Adrian Ruff

    (Ruhr-Universität Bochum)

  • Jenny Z. Zhang

    (University of Cambridge)

  • Erwin Reisner

    (University of Cambridge)

Abstract

Natural photosynthesis stores sunlight in chemical energy carriers, but it has not evolved for the efficient synthesis of fuels, such as H2. Semi-artificial photosynthesis combines the strengths of natural photosynthesis with synthetic chemistry and materials science to develop model systems that overcome nature’s limitations, such as low-yielding metabolic pathways and non-complementary light absorption by photosystems I and II. Here, we report a bias-free semi-artificial tandem platform that wires photosystem II to hydrogenase for overall water splitting. This photoelectrochemical cell integrated the red and blue light-absorber photosystem II with a green light-absorbing diketopyrrolopyrrole dye-sensitized TiO2 photoanode, and so enabled complementary panchromatic solar light absorption. Effective electronic communication at the enzyme–material interface was engineered using an osmium-complex-modified redox polymer on a hierarchically structured TiO2. This system provides a design protocol for bias-free semi-artificial Z schemes in vitro and provides an extended toolbox of biotic and abiotic components to re-engineer photosynthetic pathways.

Suggested Citation

  • Katarzyna P. Sokol & William E. Robinson & Julien Warnan & Nikolay Kornienko & Marc M. Nowaczyk & Adrian Ruff & Jenny Z. Zhang & Erwin Reisner, 2018. "Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase," Nature Energy, Nature, vol. 3(11), pages 944-951, November.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:11:d:10.1038_s41560-018-0232-y
    DOI: 10.1038/s41560-018-0232-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0232-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0232-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Dang & Wei Zhang & Jiqing Liu & Liting Wang & Deli Wu & Dejin Wang & Zhendong Lei & Liang Tang, 2023. "Bias-free driven ion assisted photoelectrochemical system for sustainable wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Hidalgo, D. & Martín-Marroquín, J.M., 2020. "Power-to-methane, coupling CO2 capture with fuel production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:11:d:10.1038_s41560-018-0232-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.