IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15218.html
   My bibliography  Save this article

Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells

Author

Listed:
  • Nicholas Aristidou

    (Imperial College London, South Kensington Campus)

  • Christopher Eames

    (University of Bath)

  • Irene Sanchez-Molina

    (Imperial College London, South Kensington Campus)

  • Xiangnan Bu

    (Imperial College London, South Kensington Campus)

  • Jan Kosco

    (Imperial College London, South Kensington Campus)

  • M. Saiful Islam

    (University of Bath)

  • Saif A. Haque

    (Imperial College London, South Kensington Campus)

Abstract

Methylammonium lead halide perovskites are attracting intense interest as promising materials for next-generation solar cells, but serious issues related to long-term stability need to be addressed. Perovskite films based on CH3NH3PbI3 undergo rapid degradation when exposed to oxygen and light. Here, we report mechanistic insights into this oxygen-induced photodegradation from a range of experimental and computational techniques. We find fast oxygen diffusion into CH3NH3PbI3 films is accompanied by photo-induced formation of highly reactive superoxide species. Perovskite films composed of small crystallites show higher yields of superoxide and lower stability. Ab initio simulations indicate that iodide vacancies are the preferred sites in mediating the photo-induced formation of superoxide species from oxygen. Thin-film passivation with iodide salts is shown to enhance film and device stability. The understanding of degradation phenomena gained from this study is important for the future design and optimization of stable perovskite solar cells.

Suggested Citation

  • Nicholas Aristidou & Christopher Eames & Irene Sanchez-Molina & Xiangnan Bu & Jan Kosco & M. Saiful Islam & Saif A. Haque, 2017. "Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15218
    DOI: 10.1038/ncomms15218
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15218
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingping Zhang & Gaoling Yang & Fei Li & Jianbing Shi & Haizheng Zhong, 2022. "Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Nicolae Filipoiu & Tudor Luca Mitran & Dragos Victor Anghel & Mihaela Florea & Ioana Pintilie & Andrei Manolescu & George Alexandru Nemnes, 2021. "Investigation of Opto-Electronic Properties and Stability of Mixed-Cation Mixed-Halide Perovskite Materials with Machine-Learning Implementation," Energies, MDPI, vol. 14(17), pages 1-19, September.
    3. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    6. Huaiqing Luo & Pengwei Li & Junjie Ma & Xue Li & He Zhu & Yajie Cheng & Qin Li & Qun Xu & Yiqiang Zhang & Yanlin Song, 2023. "Bioinspired “cage traps” for closed-loop lead management of perovskite solar cells under real-world contamination assessment," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.