IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms14873.html
   My bibliography  Save this article

Rapid electron transfer by the carbon matrix in natural pyrogenic carbon

Author

Listed:
  • Tianran Sun

    (School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Cornell University)

  • Barnaby D. A. Levin

    (School of Applied and Engineering Physics, College of Engineering, Cornell University)

  • Juan J. L. Guzman

    (College of Agriculture and Life Sciences, Cornell University)

  • Akio Enders

    (School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Cornell University)

  • David A. Muller

    (School of Applied and Engineering Physics, College of Engineering, Cornell University
    Kavli Institute for Nanoscale Science, Cornell University)

  • Largus T. Angenent

    (College of Agriculture and Life Sciences, Cornell University
    Atkinson Center for a Sustainable Future, Cornell University
    Center for Applied Geosciences, University of Tübingen)

  • Johannes Lehmann

    (School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Cornell University
    Atkinson Center for a Sustainable Future, Cornell University)

Abstract

Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria–carbon–mineral conductive network.

Suggested Citation

  • Tianran Sun & Barnaby D. A. Levin & Juan J. L. Guzman & Akio Enders & David A. Muller & Largus T. Angenent & Johannes Lehmann, 2017. "Rapid electron transfer by the carbon matrix in natural pyrogenic carbon," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14873
    DOI: 10.1038/ncomms14873
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms14873
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms14873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & O’Shea, Richard & Murphy, Jerry D., 2020. "Improving gaseous biofuel yield from seaweed through a cascading circular bioenergy system integrating anaerobic digestion and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Lin, Richen & O'Shea, Richard & Deng, Chen & Wu, Benteng & Murphy, Jerry D., 2021. "A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.