IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9103.html
   My bibliography  Save this article

Efficiently photo-charging lithium-ion battery by perovskite solar cell

Author

Listed:
  • Jiantie Xu

    (Center of Advanced Science and Engineering for Carbon (Case4Carbon), Case Western Reserve University)

  • Yonghua Chen

    (Center of Advanced Science and Engineering for Carbon (Case4Carbon), Case Western Reserve University)

  • Liming Dai

    (Center of Advanced Science and Engineering for Carbon (Case4Carbon), Case Western Reserve University)

Abstract

Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

Suggested Citation

  • Jiantie Xu & Yonghua Chen & Liming Dai, 2015. "Efficiently photo-charging lithium-ion battery by perovskite solar cell," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9103
    DOI: 10.1038/ncomms9103
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9103
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yerassyl Olzhabay & Annie Ng & Ikechi A. Ukaegbu, 2021. "Perovskite PV Energy Harvesting System for Uninterrupted IoT Device Applications," Energies, MDPI, vol. 14(23), pages 1-12, November.
    2. Peng Chen & Tian-Tian Li & Yuan-Bo Yang & Guo-Ran Li & Xue-Ping Gao, 2022. "Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Tan, Peng & Xiao, Xu & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Photo-assisted non-aqueous lithium-oxygen batteries: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Pin Wang & Mengfan Xue & Dongjian Jiang & Yanliang Yang & Junzhe Zhang & Hongzheng Dong & Gengzhi Sun & Yingfang Yao & Wenjun Luo & Zhigang Zou, 2022. "Photovoltage memory effect in a portable Faradaic junction solar rechargeable device," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Stanisław Maleczek & Kazimierz Drabczyk & Krzysztof Artur Bogdanowicz & Agnieszka Iwan, 2020. "Engineering Concept of Energy Storage Systems Based on New Type of Silicon Photovoltaic Module and Lithium Ion Batteries," Energies, MDPI, vol. 13(14), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.