IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8849.html
   My bibliography  Save this article

Detecting anthropogenic footprints in sea level rise

Author

Listed:
  • Sönke Dangendorf

    (Research Institute for Water and Environment, University of Siegen)

  • Marta Marcos

    (IMEDEA (UIB-CSIC))

  • Alfred Müller

    (University of Siegen)

  • Eduardo Zorita

    (Helmholtz-Centre Geesthacht)

  • Riccardo Riva

    (Departement of Geoscience and Remote Sensing, Delft University of Technology)

  • Kevin Berk

    (University of Siegen)

  • Jürgen Jensen

    (Research Institute for Water and Environment, University of Siegen)

Abstract

While there is scientific consensus that global and local mean sea level (GMSL and LMSL) has risen since the late nineteenth century, the relative contribution of natural and anthropogenic forcing remains unclear. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn, determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL into two components: a slowly varying volumetric component and a more rapidly changing atmospheric component. We find that the persistence of slow natural volumetric changes is underestimated in records where transient atmospheric processes dominate the spectrum. This leads to a local underestimation of possible natural trends of up to ∼1 mm per year erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

Suggested Citation

  • Sönke Dangendorf & Marta Marcos & Alfred Müller & Eduardo Zorita & Riccardo Riva & Kevin Berk & Jürgen Jensen, 2015. "Detecting anthropogenic footprints in sea level rise," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8849
    DOI: 10.1038/ncomms8849
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8849
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Meng & Zhang, Aidi & Zhang, Han & Pang, Yufei & Wang, Yueqi, 2022. "Multifractality of global sea level heights in the satellite altimeter-era," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Sönke Dangendorf & Noah Hendricks & Qiang Sun & John Klinck & Tal Ezer & Thomas Frederikse & Francisco M. Calafat & Thomas Wahl & Torbjörn E. Törnqvist, 2023. "Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Guglielmo Maria Caporale & Luis A. Gil-Alana & Laura Sauci, 2020. "US Sea Level Data: Time Trends and Persistence," CESifo Working Paper Series 8274, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.