IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5553.html
   My bibliography  Save this article

Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery

Author

Listed:
  • Motoaki Nishijima

    (Materials and Energy Technology Laboratories, SHARP Corporation)

  • Takuya Ootani

    (Materials and Energy Technology Laboratories, SHARP Corporation)

  • Yuichi Kamimura

    (Materials and Energy Technology Laboratories, SHARP Corporation)

  • Toshitsugu Sueki

    (Materials and Energy Technology Laboratories, SHARP Corporation)

  • Shogo Esaki

    (Materials and Energy Technology Laboratories, SHARP Corporation)

  • Shunsuke Murai

    (Kyoto University)

  • Koji Fujita

    (Kyoto University)

  • Katsuhisa Tanaka

    (Kyoto University)

  • Koji Ohira

    (Kyoto University)

  • Yukinori Koyama

    (Kyoto University)

  • Isao Tanaka

    (Kyoto University)

Abstract

Large-scale battery systems are essential for efficiently utilizing renewable energy power sources from solar and wind, which can generate electricity only intermittently. The use of lithium-ion batteries to store the generated energy is one solution. A long cycle life is critical for lithium-ion battery when used in these applications; this is different from portable devices which require 1,000 cycles at most. Here we demonstrate a novel co-substituted lithium iron phosphate cathode with estimated 70%-capacity retention of 25,000 cycles. This is found by exploring a wide chemical compositional space using density functional theory calculations. Relative volume change of a compound between fully lithiated and delithiated conditions is used as the descriptor for the cycle life. On the basis of the results of the screening, synthesis of selected materials is targeted. Single-phase samples with the required chemical composition are successfully made by an epoxide-mediated sol–gel method. The optimized materials show excellent cycle-life performance as lithium-ion battery cathodes.

Suggested Citation

  • Motoaki Nishijima & Takuya Ootani & Yuichi Kamimura & Toshitsugu Sueki & Shogo Esaki & Shunsuke Murai & Koji Fujita & Katsuhisa Tanaka & Koji Ohira & Yukinori Koyama & Isao Tanaka, 2014. "Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5553
    DOI: 10.1038/ncomms5553
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5553
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yong & Yang, Jie & Song, Jian, 2017. "Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1503-1512.
    2. Lingappan, Niranjanmurthi & Kong, Lingxi & Pecht, Michael, 2021. "The significance of aqueous binders in lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Li, Yong & Yang, Jie & Song, Jian, 2017. "Design structure model and renewable energy technology for rechargeable battery towards greener and more sustainable electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 19-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.