IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4977.html
   My bibliography  Save this article

A synthetic sex ratio distortion system for the control of the human malaria mosquito

Author

Listed:
  • Roberto Galizi

    (Imperial College London, South Kensington Campus
    Centro di Genomica Funzionale, University of Perugia, Edificio D)

  • Lindsey A. Doyle

    (Fred Hutchinson Cancer Research Center)

  • Miriam Menichelli

    (Imperial College London, South Kensington Campus)

  • Federica Bernardini

    (Imperial College London, South Kensington Campus)

  • Anne Deredec

    (Imperial College London, South Kensington Campus)

  • Austin Burt

    (Imperial College London, South Kensington Campus)

  • Barry L. Stoddard

    (Fred Hutchinson Cancer Research Center)

  • Nikolai Windbichler

    (Imperial College London, South Kensington Campus)

  • Andrea Crisanti

    (Imperial College London, South Kensington Campus
    Centro di Genomica Funzionale, University of Perugia, Edificio D)

Abstract

It has been theorized that inducing extreme reproductive sex ratios could be a method to suppress or eliminate pest populations. Limited knowledge about the genetic makeup and mode of action of naturally occurring sex distorters and the prevalence of co-evolving suppressors has hampered their use for control. Here we generate a synthetic sex distortion system by exploiting the specificity of the homing endonuclease I-PpoI, which is able to selectively cleave ribosomal gene sequences of the malaria vector Anopheles gambiae that are located exclusively on the mosquito’s X chromosome. We combine structure-based protein engineering and molecular genetics to restrict the activity of the potentially toxic endonuclease to spermatogenesis. Shredding of the paternal X chromosome prevents it from being transmitted to the next generation, resulting in fully fertile mosquito strains that produce >95% male offspring. We demonstrate that distorter male mosquitoes can efficiently suppress caged wild-type mosquito populations, providing the foundation for a new class of genetic vector control strategies.

Suggested Citation

  • Roberto Galizi & Lindsey A. Doyle & Miriam Menichelli & Federica Bernardini & Anne Deredec & Austin Burt & Barry L. Stoddard & Nikolai Windbichler & Andrea Crisanti, 2014. "A synthetic sex ratio distortion system for the control of the human malaria mosquito," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4977
    DOI: 10.1038/ncomms4977
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4977
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beaghton, P.J. & Burt, Austin, 2022. "Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density," Theoretical Population Biology, Elsevier, vol. 145(C), pages 109-125.
    2. Angela Meccariello & Shibo Hou & Serafima Davydova & James Daniel Fawcett & Alexandra Siddall & Philip T. Leftwich & Flavia Krsticevic & Philippos Aris Papathanos & Nikolai Windbichler, 2024. "Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Sebald A. N. Verkuijl & Estela Gonzalez & Ming Li & Joshua X. D. Ang & Nikolay P. Kandul & Michelle A. E. Anderson & Omar S. Akbari & Michael B. Bonsall & Luke Alphey, 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Franck Adama Yao & Abdoul-Azize Millogo & Patric Stephane Epopa & Ace North & Florian Noulin & Koulmaga Dao & Mouhamed Drabo & Charles Guissou & Souleymane Kekele & Moussa Namountougou & Robert Kossiv, 2022. "Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Beaghton, Andrea & Beaghton, Pantelis John & Burt, Austin, 2016. "Gene drive through a landscape: Reaction–diffusion models of population suppression and elimination by a sex ratio distorter," Theoretical Population Biology, Elsevier, vol. 108(C), pages 51-69.
    6. Silvia Grilli & Roberto Galizi & Chrysanthi Taxiarchi, 2021. "Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    7. Rocco D’Amato & Chrysanthi Taxiarchi & Marco Galardini & Alessandro Trusso & Roxana L. Minuz & Silvia Grilli & Alastair G. T. Somerville & Dammy Shittu & Ahmad S. Khalil & Roberto Galizi & Andrea Cris, 2024. "Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Stephanie Gamez & Duverney Chaverra-Rodriguez & Anna Buchman & Nikolay P. Kandul & Stelia C. Mendez-Sanchez & Jared B. Bennett & Héctor M. Sánchez C. & Ting Yang & Igor Antoshechkin & Jonny E. Duque &, 2021. "Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.