IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64986-8.html
   My bibliography  Save this article

Distinctive roles of left and right entorhinal cortex in path integration via a non-invasive stimulation study

Author

Listed:
  • Haiyan Zhao

    (Shanghai Jiao Tong University, MoE Key Lab of Artificial Intelligence, AI Institute
    Shanghai Jiao Tong University, School of Automation and Intelligent Sensing)

  • Binglei Zhao

    (Shanghai Jiao Tong University, School of Psychology)

  • Jiajun He

    (Johns Hopkins University, Biomedical Engineering Department)

  • Manhua Liu

    (Shanghai Jiao Tong University, MoE Key Lab of Artificial Intelligence, AI Institute
    Shanghai Jiao Tong University, School of Computer Science)

Abstract

The entorhinal cortex (EC) is known to play important roles in spatial cognition of human behaviors. However, the functional contributions and the lateralization of EC are not well known. This paper proposed a new paradigm by employing non-invasive stimulation - Temporal interference (TI) - of human EC in left or right hemisphere under path integration (PI) tasks of sensory-driven and abstract processing. Five metrics were introduced to evaluate PI performance, with results revealing significant improvements after EC stimulation. Moreover, the left EC modulation achieved more enhanced performances of abstract processing, whereas the modulation of the right EC had better improvements in the sensory-driven condition. The results indicated that functional roles may differ in left and right EC under PI tasks. This study provided valuable insights into hemispheric specialization within EC and suggested potential pathways for developing early intervention strategies through the non-invasive modulation of EC.

Suggested Citation

  • Haiyan Zhao & Binglei Zhao & Jiajun He & Manhua Liu, 2025. "Distinctive roles of left and right entorhinal cortex in path integration via a non-invasive stimulation study," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64986-8
    DOI: 10.1038/s41467-025-64986-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64986-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64986-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maryam Najafian Jazi & Adrian Tymorek & Ting-Yun Yen & Felix Jose Kavarayil & Moritz Stingl & Sherman Richard Chau & Benay Baskurt & Celia García Vilela & Kevin Allen, 2023. "Hippocampal firing fields anchored to a moving object predict homing direction during path-integration-based behavior," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Arne D. Ekstrom & Michael J. Kahana & Jeremy B. Caplan & Tony A. Fields & Eve A. Isham & Ehren L. Newman & Itzhak Fried, 2003. "Cellular networks underlying human spatial navigation," Nature, Nature, vol. 425(6954), pages 184-188, September.
    3. Pawel Tacikowski & Güldamla Kalender & Davide Ciliberti & Itzhak Fried, 2024. "Human hippocampal and entorhinal neurons encode the temporal structure of experience," Nature, Nature, vol. 635(8037), pages 160-167, November.
    4. Mark Hallett, 2000. "Transcranial magnetic stimulation and the human brain," Nature, Nature, vol. 406(6792), pages 147-150, July.
    5. Øyvind Arne Høydal & Emilie Ranheim Skytøen & Sebastian Ola Andersson & May-Britt Moser & Edvard I. Moser, 2019. "Object-vector coding in the medial entorhinal cortex," Nature, Nature, vol. 568(7752), pages 400-404, April.
    6. Caitlin S. Mallory & Kiah Hardcastle & Malcolm G. Campbell & Alexander Attinger & Isabel I. C. Low & Jennifer L. Raymond & Lisa M. Giocomo, 2021. "Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    7. Pierre Vassiliadis & Elena Beanato & Traian Popa & Fabienne Windel & Takuya Morishita & Esra Neufeld & Julie Duque & Gerard Derosiere & Maximilian J. Wessel & Friedhelm C. Hummel, 2024. "Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills," Nature Human Behaviour, Nature, vol. 8(8), pages 1581-1598, August.
    8. Marianne Fyhn & Torkel Hafting & Alessandro Treves & May-Britt Moser & Edvard I. Moser, 2007. "Hippocampal remapping and grid realignment in entorhinal cortex," Nature, Nature, vol. 446(7132), pages 190-194, March.
    9. Nathaniel J. Killian & Michael J. Jutras & Elizabeth A. Buffalo, 2012. "A map of visual space in the primate entorhinal cortex," Nature, Nature, vol. 491(7426), pages 761-764, November.
    10. Matthias Stangl & Ingmar Kanitscheider & Martin Riemer & Ila Fiete & Thomas Wolbers, 2020. "Sources of path integration error in young and aging humans," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    11. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    12. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte S. Herber & Karishma J. B. Pratt & Jeremy M. Shea & Saul A. Villeda & Lisa M. Giocomo, 2025. "Spatial coding dysfunction and network instability in the aging medial entorhinal cortex," Nature Communications, Nature, vol. 16(1), pages 1-27, December.
    2. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Yue-Qing Zhou & Vyash Puliyadi & Xiaojing Chen & Joonhee Leo Lee & Lan-Yuan Zhang & James J. Knierim, 2024. "Vector coding and place coding in hippocampus share a common directional signal," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Luise P. Graichen & Magdalena S. Linder & Lars Keuter & Ole Jensen & Christian F. Doeller & Claus Lamm & Tobias Staudigl & Isabella C. Wagner, 2025. "Entorhinal grid-like codes for visual space during memory formation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    7. Maryam Najafian Jazi & Adrian Tymorek & Ting-Yun Yen & Felix Jose Kavarayil & Moritz Stingl & Sherman Richard Chau & Benay Baskurt & Celia García Vilela & Kevin Allen, 2023. "Hippocampal firing fields anchored to a moving object predict homing direction during path-integration-based behavior," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    10. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Fabian Kessler & Julia Frankenstein & Constantin A. Rothkopf, 2024. "Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Gillian Coughlan & William Plumb & Peter Zhukovsky & Min Hane Aung & Michael Hornberger, 2023. "Vestibular contribution to path integration deficits in ‘at-genetic-risk’ for Alzheimer’s disease," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-12, January.
    14. Torsten Neher & Amir Hossein Azizi & Sen Cheng, 2017. "From grid cells to place cells with realistic field sizes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    15. Xiaoyang Long & Daniel Bush & Bin Deng & Neil Burgess & Sheng-Jia Zhang, 2025. "Allocentric and egocentric spatial representations coexist in rodent medial entorhinal cortex," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    16. Alexander Nitsch & Mona M. Garvert & Jacob L. S. Bellmund & Nicolas W. Schuck & Christian F. Doeller, 2024. "Grid-like entorhinal representation of an abstract value space during prospective decision making," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    17. Zeyuan Ye & Ralf Wessel, 2025. "Speed modulations in grid cell information geometry," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    18. Axel Kammerer & Christian Leibold, 2014. "Hippocampal Remapping Is Constrained by Sparseness rather than Capacity," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-12, December.
    19. Laurenz Muessig & Fabio Ribeiro Rodrigues & Tale L. Bjerknes & Benjamin W. Towse & Caswell Barry & Neil Burgess & Edvard I. Moser & May-Britt Moser & Francesca Cacucci & Thomas J. Wills, 2024. "Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Erik Hermansen & David A. Klindt & Benjamin A. Dunn, 2024. "Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64986-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.