IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64915-9.html
   My bibliography  Save this article

Observation of momentum-band topology in PT-symmetric Floquet lattices

Author

Listed:
  • Shuaishuai Tong

    (Wuhan University)

  • Qicheng Zhang

    (Wuhan University)

  • Gaohan Li

    (Wuhan University)

  • Kun Zhang

    (Wuhan University)

  • Chun Xie

    (Wuhan University)

  • Chunyin Qiu

    (Wuhan University)

Abstract

Momentum-band topology is a groundbreaking concept in multidisciplinary physics. Unlike the conventional energy-band topology, it defines a distinctive band topology within the energy Brillouin zone. Despite revolutionizing the paradigm of topological band theory, both theoretical and experimental studies of this new concept remain in their infancy. Here, we unveil the momentum-band topology in a PT-symmetric Floquet lattice, where the drive-induced momentum gap can be rigorously characterized by a quantized Berry phase. Experimentally, we synthesize the model using an acoustic cavity-tube structure coupled to custom-designed external circuits. By innovatively reconstructing the Floquet operator from measured time-domain wavefunctions, we extract the system’s eigenstates and, for the first time, provide direct bulk evidence of momentum-band topology via momentum-band inversion and topological invariants. This is accompanied by a clear observation of time-localized interface states, thus providing a comprehensive examination of the temporal bulk-boundary correspondence. Our work paves the way for further experimental studies on the burgeoning momentum-gap physics.

Suggested Citation

  • Shuaishuai Tong & Qicheng Zhang & Gaohan Li & Kun Zhang & Chun Xie & Chunyin Qiu, 2025. "Observation of momentum-band topology in PT-symmetric Floquet lattices," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64915-9
    DOI: 10.1038/s41467-025-64915-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64915-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64915-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weijie Liu & Quancheng Liu & Xiang Ni & Yuechen Jia & Klaus Ziegler & Andrea Alù & Feng Chen, 2024. "Floquet parity-time symmetry in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Mikael C. Rechtsman & Julia M. Zeuner & Yonatan Plotnik & Yaakov Lumer & Daniel Podolsky & Felix Dreisow & Stefan Nolte & Mordechai Segev & Alexander Szameit, 2013. "Photonic Floquet topological insulators," Nature, Nature, vol. 496(7444), pages 196-200, April.
    3. Hailong He & Chunyin Qiu & Liping Ye & Xiangxi Cai & Xiying Fan & Manzhu Ke & Fan Zhang & Zhengyou Liu, 2018. "Topological negative refraction of surface acoustic waves in a Weyl phononic crystal," Nature, Nature, vol. 560(7716), pages 61-64, August.
    4. Xiujuan Zhang & Farzad Zangeneh-Nejad & Ze-Guo Chen & Ming-Hui Lu & Johan Christensen, 2023. "A second wave of topological phenomena in photonics and acoustics," Nature, Nature, vol. 618(7966), pages 687-697, June.
    5. Jiaming Li & Andrew K. Harter & Ji Liu & Leonardo de Melo & Yogesh N. Joglekar & Le Luo, 2019. "Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    6. Yudong Ren & Kangpeng Ye & Qiaolu Chen & Fujia Chen & Li Zhang & Yuang Pan & Wenhao Li & Xinrui Li & Lu Zhang & Hongsheng Chen & Yihao Yang, 2025. "Observation of momentum-gap topology of light at temporal interfaces in a time-synthetic lattice," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    7. Lukas J. Maczewsky & Julia M. Zeuner & Stefan Nolte & Alexander Szameit, 2017. "Observation of photonic anomalous Floquet topological insulators," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    8. Li Zhang & Yihao Yang & Yong Ge & Yi-Jun Guan & Qiaolu Chen & Qinghui Yan & Fujia Chen & Rui Xi & Yuanzhen Li & Ding Jia & Shou-Qi Yuan & Hong-Xiang Sun & Hongsheng Chen & Baile Zhang, 2021. "Acoustic non-Hermitian skin effect from twisted winding topology," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Bugarski, Kolja & Maluckov, Aleksandra & Vicencio, Rodrigo A. & Johansson, Magnus, 2025. "Edge modes in strongly nonlinear saturable SSH photonic lattices: Tracing a bulk-edge correspondence through instabilities and bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    3. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kartashov, Yaroslav V., 2024. "Solitons in higher-order topological insulator created by unit cell twisting," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    7. Ivanov, Sergey K. & Kartashov, Yaroslav V., 2023. "π-solitons on a ring of waveguides," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Ivanov, Sergey K. & Kartashov, Yaroslav V., 2024. "Floquet valley Hall edge solitons," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    9. Zhongming Gu & He Gao & Haoran Xue & Jensen Li & Zhongqing Su & Jie Zhu, 2022. "Transient non-Hermitian skin effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Weijie Liu & Quancheng Liu & Xiang Ni & Yuechen Jia & Klaus Ziegler & Andrea Alù & Feng Chen, 2024. "Floquet parity-time symmetry in integrated photonics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Wu, Zhenkun & Yang, Kaibo & Zhang, Yagang & Ren, Xijun & Wen, Feng & Gu, Yuzong & Guo, Lijun, 2022. "Nonlinear conical diffraction in fractional dimensions with a PT-symmetric optical lattice," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Meng, Hongjuan & Zhou, Yushan & Li, Xiaolin & Ren, Xueping & Wan, Xiaohuan & Zhou, Zhikun & Wang, Wenyuan & Shi, Yuren, 2021. "Gap solitons in Bose–Einstein condensate loaded in a honeycomb optical lattice: Nonlinear dynamical stability, tunneling, and self-trapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    15. Chenwei Lv & Ren Zhang & Zhengzheng Zhai & Qi Zhou, 2022. "Curving the space by non-Hermiticity," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Li, Binsheng & Chen, Hui & Xia, Baizhan & Yao, Lingyun, 2023. "Acoustic energy harvesting based on topological states of multi-resonant phononic crystals," Applied Energy, Elsevier, vol. 341(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64915-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.