IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64863-4.html
   My bibliography  Save this article

A node-localized efflux transporter for loading iron to developing tissues in rice

Author

Listed:
  • Jing Che

    (Chinese Academy of Sciences
    Okayama University
    University of Chinese Academy of Sciences)

  • Sheng Huang

    (Okayama University)

  • Yuting Qu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuma Yoshioka

    (Okayama University
    Okayama University)

  • Chiyuri Tomita

    (Okayama University
    Okayama University)

  • Takaaki Miyaji

    (Okayama University
    Okayama University)

  • Zhenyang Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Renfang Shen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Naoki Yamaji

    (Okayama University)

  • Jian Feng Ma

    (Okayama University)

Abstract

Iron (Fe) is an essential micronutrient for plant growth and development. It plays crucial roles in various organs and tissues of plants, but the molecular mechanisms governing its distribution to the above-ground parts after root uptake remain unclear. In this study, we identify OsIET1 (Oryza sativa Iron Efflux Transporter 1), a rice gene highly expressed in the nodes. OsIET1 encodes a plasma membrane-localized protein, which shows efflux transport activity for ferrous iron. It is predominantly expressed in the xylem regions of diffuse vascular bundles, and its expression is upregulated under high Fe conditions. Disruption of OsIET1 impairs Fe allocation, reducing Fe transport to developing tissues (young leaves and grains), while increasing accumulation in nodes and older leaves. This misdistribution causes chlorosis in young leaves and decreases grain yield, especially under Fe-deficient conditions. Furthermore, we detect excessive Fe deposition around the xylem of diffuse vascular bundles in the nodes. Given the pivotal role of nodes in mineral distribution, our results indicate that OsIET1 mediates inter-vascular Fe transfer by facilitating Fe loading into the xylem of diffuse vascular bundles. This process ensures preferential Fe delivery to developing tissues, thereby promoting optimal plant growth and productivity.

Suggested Citation

  • Jing Che & Sheng Huang & Yuting Qu & Yuma Yoshioka & Chiyuri Tomita & Takaaki Miyaji & Zhenyang Liu & Renfang Shen & Naoki Yamaji & Jian Feng Ma, 2025. "A node-localized efflux transporter for loading iron to developing tissues in rice," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64863-4
    DOI: 10.1038/s41467-025-64863-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64863-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64863-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naoki Yamaji & Akimasa Sasaki & Ji Xing Xia & Kengo Yokosho & Jian Feng Ma, 2013. "A node-based switch for preferential distribution of manganese in rice," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    2. Naoki Yamaji & Yuma Takemoto & Takaaki Miyaji & Namiki Mitani-Ueno & Kaoru T. Yoshida & Jian Feng Ma, 2017. "Erratum: Reducing phosphorus accumulation in rice grains with an impaired transporter in the node," Nature, Nature, vol. 543(7643), pages 136-136, March.
    3. Naoki Yamaji & Yuma Takemoto & Takaaki Miyaji & Namiki Mitani-Ueno & Kaoru T. Yoshida & Jian Feng Ma, 2017. "Reducing phosphorus accumulation in rice grains with an impaired transporter in the node," Nature, Nature, vol. 541(7635), pages 92-95, January.
    4. Takaaki Miyaji & Takashi Kuromori & Yu Takeuchi & Naoki Yamaji & Kengo Yokosho & Atsushi Shimazawa & Eriko Sugimoto & Hiroshi Omote & Jian Feng Ma & Kazuo Shinozaki & Yoshinori Moriyama, 2015. "AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis," Nature Communications, Nature, vol. 6(1), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namiki Mitani-Ueno & Naoki Yamaji & Sheng Huang & Yuma Yoshioka & Takaaki Miyaji & Jian Feng Ma, 2023. "A silicon transporter gene required for healthy growth of rice on land," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Naoki Yamaji & Namiki Mitani-Ueno & Toshiki Fujii & Tomonori Shinya & Ji Feng Shao & Shota Watanuki & Yasunori Saitoh & Jian Feng Ma, 2024. "Shoot-Silicon-Signal protein to regulate root silicon uptake in rice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Michael Oster & Henry Reyer & Elizabeth Ball & Dario Fornara & John McKillen & Kristina Ulrich Sørensen & Hanne Damgaard Poulsen & Kim Andersson & Daniel Ddiba & Arno Rosemarin & Linda Arata & Paolo S, 2018. "Bridging Gaps in the Agricultural Phosphorus Cycle from an Animal Husbandry Perspective—The Case of Pigs and Poultry," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    4. Mushtak Kisko & Vishnu Shukla & Mandeep Kaur & Nadia Bouain & Nanthana Chaiwong & Benoit Lacombe & Ajay Kumar Pandey & Hatem Rouached, 2018. "Phosphorus Transport in Arabidopsis and Wheat: Emerging Strategies to Improve P Pool in Seeds," Agriculture, MDPI, vol. 8(2), pages 1-12, February.
    5. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Zichao Tang & Yanxue Jiang & Chenchen Wang & Rui Zhang & Jinsong Guo & Fang Fang, 2023. "New Insight into Phosphorus Release of Rhizosphere Soil in the Water Level Fluctuation Zone," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    7. Li Lin Xu & Meng Qi Cui & Chen Xu & Miao Jing Zhang & Gui Xin Li & Ji Ming Xu & Xiao Dan Wu & Chuan Zao Mao & Wo Na Ding & Moussa Benhamed & Zhong Jie Ding & Shao Jian Zheng, 2024. "A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Daniela Baldantoni & Alessandro Bellino, 2021. "On the Capability of the Epigeous Organs of Phragmites australis to Act as Metal Accumulators in Biomonitoring Studies," Sustainability, MDPI, vol. 13(14), pages 1-9, July.
    9. Hye-In Nam & Zaigham Shahzad & Yanniv Dorone & Sophie Clowez & Kangmei Zhao & Nadia Bouain & Katerina S. Lay-Pruitt & Huikyong Cho & Seung Y. Rhee & Hatem Rouached, 2021. "Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64863-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.