IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64554-0.html
   My bibliography  Save this article

Phase-probability shaping for speckle-free holographic lithography

Author

Listed:
  • Dong Zhao

    (University of Science and Technology of China)

  • Weiwei Fu

    (University of Science and Technology of China
    Anhui University
    Anhui University)

  • Jun He

    (University of Science and Technology of China)

  • Ziqin Li

    (University of Science and Technology of China)

  • Fang-Wen Sun

    (University of Science and Technology of China)

  • Kun Huang

    (University of Science and Technology of China
    Anhui University)

Abstract

Optical holography has undergone rapid development since its invention in 1948, but the accompanying speckles with alternating dark and bright spots of randomly varying shapes are still untamed now due to the intrinsic fluctuations from irregular complex-field superposition. Despite spatial, temporal and spectral averages for speckle reduction, holographic images cannot yet meet the requirement for high-homogeneity, edge-sharp and shape-unlimited features in optical display and lithography. Here we report that holographic speckles can be removed by narrowing the probability density distribution of encoded phase to homogenize optical superposition. Guided by this physical insight, an Adam-gradient-descent probability-shaping (APS) method is developed to prohibit the fluctuations of intensity in a computer-generated hologram (CGH), which empowers the experimental reconstruction of irregular images with ultralow speckle contrast (C = 0.08) and record-high edge sharpness (~1000 mm−1). These well-behaved performances revitalize CGH for lensless lithography, enabling experimental fabrication of arbitrary-shape and edge-sharp patterns with spatial resolution of 0.54λ/NA.

Suggested Citation

  • Dong Zhao & Weiwei Fu & Jun He & Ziqin Li & Fang-Wen Sun & Kun Huang, 2025. "Phase-probability shaping for speckle-free holographic lithography," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64554-0
    DOI: 10.1038/s41467-025-64554-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64554-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64554-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kun Huang & Hong Liu & Francisco J. Garcia-Vidal & Minghui Hong & Boris Luk’yanchuk & Jinghua Teng & Cheng-Wei Qiu, 2015. "Ultrahigh-capacity non-periodic photon sieves operating in visible light," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Lingling Huang & Xianzhong Chen & Holger Mühlenbernd & Hao Zhang & Shumei Chen & Benfeng Bai & Qiaofeng Tan & Guofan Jin & Kok-Wai Cheah & Cheng-Wei Qiu & Jensen Li & Thomas Zentgraf & Shuang Zhang, 2013. "Three-dimensional optical holography using a plasmonic metasurface," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    3. Liang Shi & Beichen Li & Changil Kim & Petr Kellnhofer & Wojciech Matusik, 2021. "Towards real-time photorealistic 3D holography with deep neural networks," Nature, Nature, vol. 591(7849), pages 234-239, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ethan Tseng & Grace Kuo & Seung-Hwan Baek & Nathan Matsuda & Andrew Maimone & Florian Schiffers & Praneeth Chakravarthula & Qiang Fu & Wolfgang Heidrich & Douglas Lanman & Felix Heide, 2024. "Neural étendue expander for ultra-wide-angle high-fidelity holographic display," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xiaoli Jing & Ruizhe Zhao & Xin Li & Qiang Jiang & Chengzhi Li & Guangzhou Geng & Junjie Li & Yongtian Wang & Lingling Huang, 2022. "Single-shot 3D imaging with point cloud projection based on metadevice," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Pengcheng Chen & Xiaoyi Xu & Tianxin Wang & Chao Zhou & Dunzhao Wei & Jianan Ma & Junjie Guo & Xuejing Cui & Xiaoyan Cheng & Chenzhu Xie & Shuang Zhang & Shining Zhu & Min Xiao & Yong Zhang, 2023. "Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Di Wang & Yi-Long Li & Xin-Ru Zheng & Ruo-Nan Ji & Xin Xie & Kun Song & Fan-Chuan Lin & Nan-Nan Li & Zhao Jiang & Chao Liu & Yi-Wei Zheng & Shao-Wei Wang & Wei Lu & Bao-Hua Jia & Qiong-Hua Wang, 2024. "Decimeter-depth and polarization addressable color 3D meta-holography," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Pouria Sanjari & Firooz Aflatouni, 2025. "A reconfigurable non-linear active metasurface for coherent wave down-conversion," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. M. Makowski & J. Bomba & A. Frej & M. Kolodziejczyk & M. Sypek & T. Shimobaba & T. Ito & A. Kirilyuk & A. Stupakiewicz, 2022. "Dynamic complex opto-magnetic holography," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Seokwoo Kim & Joohoon Kim & Kyungtae Kim & Minsu Jeong & Junsuk Rho, 2025. "Anti-aliased metasurfaces beyond the Nyquist limit," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Ninghe Liu & Kexuan Liu & Yixin Yang & Yifan Peng & Liangcai Cao, 2025. "Propagation-adaptive 4K computer-generated holography using physics-constrained spatial and Fourier neural operator," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Daeho Yang & Wontaek Seo & Hyeonseung Yu & Sun Il Kim & Bongsu Shin & Chang-Kun Lee & Seokil Moon & Jungkwuen An & Jong-Young Hong & Geeyoung Sung & Hong-Seok Lee, 2022. "Diffraction-engineered holography: Beyond the depth representation limit of holographic displays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Zijian Shi & Zhensong Wan & Ziyu Zhan & Kaige Liu & Qiang Liu & Xing Fu, 2023. "Super-resolution orbital angular momentum holography," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Zhiyao Ma & Tian Tian & Yuxuan Liao & Xue Feng & Yongzhuo Li & Kaiyu Cui & Fang Liu & Hao Sun & Wei Zhang & Yidong Huang, 2024. "Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Changwon Jang & Kiseung Bang & Minseok Chae & Byoungho Lee & Douglas Lanman, 2024. "Waveguide holography for 3D augmented reality glasses," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Jun He & Hong Liu & Dong Zhao & Jodhbir S. Mehta & Cheng-Wei Qiu & Fangwen Sun & Jinghua Teng & Kun Huang, 2024. "High-order diffraction for optical superfocusing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Hyeonseung Yu & Youngrok Kim & Daeho Yang & Wontaek Seo & Yunhee Kim & Jong-Young Hong & Hoon Song & Geeyoung Sung & Younghun Sung & Sung-Wook Min & Hong-Seok Lee, 2023. "Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Qiuhong Cheng & Aiyou Hao & Pengyao Xing, 2021. "A chemosensor-based chiral coassembly with switchable circularly polarized luminescence," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Gong, Bin & An, Aimin & Shi, Yaoke & Zhang, Xuemin, 2024. "Fast fault detection method for photovoltaic arrays with adaptive deep multiscale feature enhancement," Applied Energy, Elsevier, vol. 353(PA).
    17. Jun He & Dong Zhao & Hong Liu & Jinghua Teng & Cheng-Wei Qiu & Kun Huang, 2023. "An entropy-controlled objective chip for reflective confocal microscopy with subdiffraction-limit resolution," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64554-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.