IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64421-y.html
   My bibliography  Save this article

Liquid-matter relaxor ferroelectrics by design

Author

Listed:
  • Xinxin Zhang

    (South China University of Technology)

  • Yu Zou

    (South China University of Technology)

  • Minghui Deng

    (South China University of Technology)

  • Xiang Huang

    (South China University of Technology)

  • Fan Ye

    (South China University of Technology)

  • Xiujuan Liu

    (South China University of Technology)

  • Erxiang Xu

    (Tsinghua University)

  • Yang Shen

    (Tsinghua University)

  • Satoshi Aya

    (South China University of Technology
    South China University of Technology)

  • Mingjun Huang

    (South China University of Technology
    South China University of Technology)

Abstract

Knowing that traditional relaxor ferroelectrics stem from crystalline materials, one may ask whether they stabilize the liquid-matter analogy. The perspective is challenging and may enable a generic design of fluidic and flexible relaxor ferroelectrics. Here, we unveil a novel polar matter state, dubbed the nematic relaxor ferroelectric, by artificially introducing polar nanoregions with nematicity into a dielectric nematic environment. We observe clear signatures of a nematic relaxor, which exhibits a high field-induced polarization of 1.1 μC·cm−2 at 5 V·μm−1, over a wide temperature range (>30 K). The relaxor demonstrates two regimes: (1) stable relaxor against high electric fields (> 5 V·μm−1) at high temperatures over a 30 K range; (2) relaxor with a field-induced transition to a ferroelectric state at low temperatures. Based on the Landau-Ginzburg-Devonshire theory, we reconstruct free-energy landscapes from the electric field vs polarization curves. We observe a continuous transformation of energy landscapes from a double-well shape to a single-well shape, characterized by a broadening of the energy bottom, corresponding to a shift from nematic ferroelectrics to nematic relaxors with significant polarization fluctuations.

Suggested Citation

  • Xinxin Zhang & Yu Zou & Minghui Deng & Xiang Huang & Fan Ye & Xiujuan Liu & Erxiang Xu & Yang Shen & Satoshi Aya & Mingjun Huang, 2025. "Liquid-matter relaxor ferroelectrics by design," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64421-y
    DOI: 10.1038/s41467-025-64421-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64421-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64421-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingbing Yang & Qinghua Zhang & Houbing Huang & Hao Pan & Wenxuan Zhu & Fanqi Meng & Shun Lan & Yiqian Liu & Bin Wei & Yiqun Liu & Letao Yang & Lin Gu & Long-Qing Chen & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Engineering relaxors by entropy for high energy storage performance," Nature Energy, Nature, vol. 8(9), pages 956-964, September.
    2. Richard J. Mandle & Nerea Sebastián & Josu Martinez-Perdiguero & Alenka Mertelj, 2021. "On the molecular origins of the ferroelectric splay nematic phase," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Michael Hoffmann & Franz P. G. Fengler & Melanie Herzig & Terence Mittmann & Benjamin Max & Uwe Schroeder & Raluca Negrea & Pintilie Lucian & Stefan Slesazeck & Thomas Mikolajick, 2019. "Unveiling the double-well energy landscape in a ferroelectric layer," Nature, Nature, vol. 565(7740), pages 464-467, January.
    4. Hao Pan & Jing Ma & Ji Ma & Qinghua Zhang & Xiaozhi Liu & Bo Guan & Lin Gu & Xin Zhang & Yu-Jun Zhang & Liangliang Li & Yang Shen & Yuan-Hua Lin & Ce-Wen Nan, 2018. "Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqian Liu & Bingbing Yang & Shun Lan & Zhifang Zhou & Lvye Dou & Ce-Wen Nan & Yuan-Hua Lin, 2025. "Harnessing local inhomogeneity for enhanced dielectric energy storage," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Wei Li & Zhong-Hui Shen & Run-Lin Liu & Xiao-Xiao Chen & Meng-Fan Guo & Jin-Ming Guo & Hua Hao & Yang Shen & Han-Xing Liu & Long-Qing Chen & Ce-Wen Nan, 2024. "Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Fanrong Lin & Xiaoyu Xuan & Zhonghan Cao & Zhuhua Zhang & Ying Liu & Minmin Xue & Yang Hang & Xin Liu & Yizhou Zhao & Libo Gao & Wanlin Guo & Yanpeng Liu, 2025. "Room temperature ferroelectricity in monolayer graphene sandwiched between hexagonal boron nitride," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Michael Hoffmann & Zheng Wang & Nujhat Tasneem & Ahmad Zubair & Prasanna Venkatesan Ravindran & Mengkun Tian & Anthony Arthur Gaskell & Dina Triyoso & Steven Consiglio & Kandabara Tapily & Robert Clar, 2022. "Antiferroelectric negative capacitance from a structural phase transition in zirconia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yunpeng Zheng & Qinghua Zhang & Caijuan Shi & Zhifang Zhou & Yang Lu & Jian Han & Hetian Chen & Yunpeng Ma & Yujun Zhang & Changpeng Lin & Wei Xu & Weigang Ma & Qian Li & Yueyang Yang & Bin Wei & Bing, 2024. "Carrier-phonon decoupling in perovskite thermoelectrics via entropy engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Xi Kong & Letao Yang & Fanqi Meng & Tao Zhang & Hejin Zhang & Yuan-Hua Lin & Houbing Huang & Shujun Zhang & Jinming Guo & Ce-Wen Nan, 2025. "High-entropy engineered BaTiO3-based ceramic capacitors with greatly enhanced high-temperature energy storage performance," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Jidan Yang & Yu Zou & Wentao Tang & Jinxing Li & Mingjun Huang & Satoshi Aya, 2022. "Spontaneous electric-polarization topology in confined ferroelectric nematics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Jiaqi Li & Yibing Zhang & Zhen Liu & Lingling Wei & Haonan Peng & Minghao Liu & Shiguang Yan & Kunyu Zhao & Huarong Zeng & Zupei Yang & Genshui Wang, 2025. "Enhanced energy-storage in lead-free multilayer capacitors via entropy-assisted polymorphic domain engineering," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    10. Wenjun Cao & Yanwei Wu & Xiaoyu Yang & Daqin Guan & Xuecen Huang & Feng Li & Youmin Guo & Chunchang Wang & Binghui Ge & Xu Hou & Zhenxiang Cheng, 2025. "Breaking polarization-breakdown strength paradox for ultrahigh energy storage density in NBT-based ceramics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Jinghan Cai & Shun Lan & Bin Wei & Junlei Qi & Ce-Wen Nan & Yuan-Hua Lin, 2025. "Colossal permittivity in high-entropy CaTiO3 ceramics by chemical bonding engineering," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. Hiroya Nishikawa & Koki Sano & Fumito Araoka, 2022. "Anisotropic fluid with phototunable dielectric permittivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Xiangfu Zeng & Jinfeng Lin & Gaolei Dong & Jie Shen & Luomeng Tang & Qifa Lin & Simin Wang & Min Gao & Chunlin Zhao & Tengfei Lin & Laihui Luo & Chao Chen & Baisheng Sa & Cong Lin & Xiao Wu & Jiwei Zh, 2025. "Polymorphic relaxor phase and defect dipole polarization co-reinforced capacitor energy storage in temperature-monitorable high-entropy ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    14. Zhaoli Liu & Wenzhe Gao & Lizhi Liu & Yixuan Gao & Cui Zhang & Long Chen & Fan Lv & Jiafeng Xi & Ting Du & Linpin Luo & Junchen Zhuo & Wentao Zhang & Yanwei Ji & Yizhong Shen & Wen Liu & Jianlong Wang, 2025. "Spin polarization induced by atomic strain of MBene promotes the ·O2– production for groundwater disinfection," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    15. Jordan Hobbs & Calum J. Gibb & Richard. J. Mandle, 2025. "Ferri- and ferro-electric switching in spontaneously chiral polar liquid crystals," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    16. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    17. Tongxin Wei & Jinzhu Zou & Xuefan Zhou & Miao Song & Yan Zhang & Cewen Nan & Yuanhua Lin & Dou Zhang, 2025. "High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    18. I. Bonamassa & B. Gross & J. Kertész & S. Havlin, 2025. "Hybrid universality classes of systemic cascades," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64421-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.