IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63584-y.html
   My bibliography  Save this article

Enhanced energy-storage in lead-free multilayer capacitors via entropy-assisted polymorphic domain engineering

Author

Listed:
  • Jiaqi Li

    (Shaanxi Normal University
    Chinese Academy of Sciences)

  • Yibing Zhang

    (Shaanxi Normal University)

  • Zhen Liu

    (Chinese Academy of Sciences)

  • Lingling Wei

    (Shaanxi Normal University)

  • Haonan Peng

    (Chinese Academy of Sciences)

  • Minghao Liu

    (Chinese Academy of Sciences)

  • Shiguang Yan

    (Chinese Academy of Sciences)

  • Kunyu Zhao

    (Chinese Academy of Sciences)

  • Huarong Zeng

    (Chinese Academy of Sciences)

  • Zupei Yang

    (Shaanxi Normal University)

  • Genshui Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Lead-free multilayer ceramic capacitors with high energy storage performance are essential components in environmentally sustainable and miniaturized pulsed power systems. However, their practical application is limited by inherently low energy density and suboptimal energy efficiency. In this study, a stepwise dual-site entropy increase strategy is introduced to simultaneously modulate relaxor behavior and enhance the breakdown strength of Bi0.5Na0.5TiO3-based capacitors. Atomic-scale structural analyses reveal that the coexistence of rhombohedral, tetragonal, and cubic polymorphic domains effectively prevents premature polarization saturation while maintaining high maximum polarization. Additionally, the high configurational entropy induces non-periodic lattice distortions, promoting grain refinement and improving electrical resistance, which collectively enhance breakdown endurance. Consequently, an enhanced energy density of 17.8 J cm−3 with a high efficiency of 97.6% is achieved in the high-entropy capacitors. Furthermore, the high-entropy capacitors exhibit excellent thermal and fatigue stability, along with superior charge-discharge performance. This study provides a viable structural design approach for developing high-performance relaxor ferroelectric materials and devices with optimized energy storage characteristics.

Suggested Citation

  • Jiaqi Li & Yibing Zhang & Zhen Liu & Lingling Wei & Haonan Peng & Minghao Liu & Shiguang Yan & Kunyu Zhao & Huarong Zeng & Zupei Yang & Genshui Wang, 2025. "Enhanced energy-storage in lead-free multilayer capacitors via entropy-assisted polymorphic domain engineering," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63584-y
    DOI: 10.1038/s41467-025-63584-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63584-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63584-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bingbing Yang & Qinghua Zhang & Houbing Huang & Hao Pan & Wenxuan Zhu & Fanqi Meng & Shun Lan & Yiqian Liu & Bin Wei & Yiqun Liu & Letao Yang & Lin Gu & Long-Qing Chen & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Engineering relaxors by entropy for high energy storage performance," Nature Energy, Nature, vol. 8(9), pages 956-964, September.
    2. Zhentao Wang & Da Li & Wenyuan Liu & Liqiang He & Diming Xu & Jinnan Liu & Jiajia Ren & Xin Wang & Yang Liu & Guoqiang He & Jian Bao & Zhen Fang & Guiwei Yan & Xu Liang & Tao Zhou & Weichen Zhao & Wen, 2025. "Ultra-high energy storage in lead-free NaNbO3-based relaxor ceramics with directional slush-like polar structures design," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    3. Yang Li & Ningbo Fan & Jie Wu & Bin Xu & Xuexin Li & Xuechen Liu & Yizhou Xiao & Dingwei Hou & Xinya Feng & Jinjing Zhang & Shujun Zhang & Jinglei Li & Fei Li, 2024. "Enhanced energy storage performance in NBT-based MLCCs via cooperative optimization of polarization and grain alignment," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Xingcheng Wang & Ji Zhang & Xingshuai Ma & Huajie Luo & Laijun Liu & Hui Liu & Jun Chen, 2025. "Machine learning assisted composition design of high-entropy Pb-free relaxors with giant energy-storage," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Dong & Zhengqian Fu & Zhipeng Wang & Xiang Lv & Jiagang Wu, 2025. "Engineering relaxors by embedding ultra-weak polar regions for superior energy storage," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Tongxin Wei & Jinzhu Zou & Xuefan Zhou & Miao Song & Yan Zhang & Cewen Nan & Yuanhua Lin & Dou Zhang, 2025. "High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Zhixin Zhou & Wangfeng Bai & Ning Liu & Wei Zhang & Sen Chen & Peng Wang & Jinjun Liu & Jiwei Zhai & Jinming Guo & Guanshihan Du & Yongjun Wu & Zijian Hong & Weiping Li & Zhongbin Pan, 2025. "Ultrahigh capacitive energy storage of BiFeO3-based ceramics through multi-oriented nanodomain construction," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Xi Kong & Letao Yang & Fanqi Meng & Tao Zhang & Hejin Zhang & Yuan-Hua Lin & Houbing Huang & Shujun Zhang & Jinming Guo & Ce-Wen Nan, 2025. "High-entropy engineered BaTiO3-based ceramic capacitors with greatly enhanced high-temperature energy storage performance," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    5. Ruirui Kang & Yang Li & Tengfei Hu & Zepeng Wang & Yangfei Gao & Junbo Xu & Mei Bai & Zhengqian Fu & Lixue Zhang & Jiantuo Zhao & Danyang Wang & Jinyou Shao & Fei Li & Shujun Zhang & Xiaojie Lou, 2025. "Ultra-high energy storage in relaxor ferroelectric MLCCs at elevated temperatures via entropy modulated strain heterogeneity," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Weichen Zhao & Zhaobo Liu & Diming Xu & Ge Wang & Da Li & Jinnan Liu & Zhentao Wang & Yan Guo & Jiajia Ren & Tao Zhou & Lixia Pang & Hongwei Yang & Wenfeng Liu & Houbin Huang & Di Zhou, 2025. "Advanced stability and energy storage capacity in hierarchically engineered Bi0.5Na0.5TiO3-based multilayer capacitors," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Yongbo Fan & Wanbo Qu & Haifa Qiu & Shuaibing Gao & Lu Li & Zezhou Lin & Yuxuan Yang & Junyi Yu & Lin Wang & Saiwei Luan & Hao Li & Lin Lei & Yang Zhang & Huiqing Fan & Haijun Wu & Shuhui Yu & Haitao , 2025. "High entropy modulated quantum paraelectric perovskite for capacitive energy storage," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    8. Xiangfu Zeng & Jinfeng Lin & Gaolei Dong & Jie Shen & Luomeng Tang & Qifa Lin & Simin Wang & Min Gao & Chunlin Zhao & Tengfei Lin & Laihui Luo & Chao Chen & Baisheng Sa & Cong Lin & Xiao Wu & Jiwei Zh, 2025. "Polymorphic relaxor phase and defect dipole polarization co-reinforced capacitor energy storage in temperature-monitorable high-entropy ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Jiawen Hu & Peng Wang & Liqiang He & Guanglong Ge & Jinjun Liu & Tengfei Hu & Fangfang Xu & Tao Zeng & Zhengqian Fu & Jiwei Zhai & Weiping Li & Zhongbin Pan, 2025. "Local heterogeneous dipolar structures drive gigantic capacitive energy storage in antiferroelectric ceramics," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    10. Xingcheng Wang & Ji Zhang & Xingshuai Ma & Huajie Luo & Laijun Liu & Hui Liu & Jun Chen, 2025. "Machine learning assisted composition design of high-entropy Pb-free relaxors with giant energy-storage," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    11. Xuexin Li & Jinglei Li & Yang Li & Xuechen Liu & Shuai Yang & Jie Wu & Dingwei Hou & Jinjing Zhang & Haijun Wu & Yang Zhang & Xiangdong Ding & Jun Sun & Shujun Zhang & Hongliang Du & Fei Li, 2025. "High performance relaxor ferroelectric textured ceramics for electrocaloric refrigeration," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Jinghan Cai & Shun Lan & Bin Wei & Junlei Qi & Ce-Wen Nan & Yuan-Hua Lin, 2025. "Colossal permittivity in high-entropy CaTiO3 ceramics by chemical bonding engineering," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Zhaoli Liu & Wenzhe Gao & Lizhi Liu & Yixuan Gao & Cui Zhang & Long Chen & Fan Lv & Jiafeng Xi & Ting Du & Linpin Luo & Junchen Zhuo & Wentao Zhang & Yanwei Ji & Yizhong Shen & Wen Liu & Jianlong Wang, 2025. "Spin polarization induced by atomic strain of MBene promotes the ·O2– production for groundwater disinfection," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    15. Haonan Peng & Tiantian Wu & Zhen Liu & Zhengqian Fu & Dong Wang & Yanshuang Hao & Fangfang Xu & Genshui Wang & Junhao Chu, 2024. "High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Zilong Xie & Jianan Zhu & Zhengli Dou & Yongzheng Zhang & Ke Wang & Kai Wu & Qiang Fu, 2024. "Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Jianhong Duan & Kun Wei & Qianbiao Du & Linzhao Ma & Huifen Yu & He Qi & Yangchun Tan & Gaokuo Zhong & Hao Li, 2024. "High-entropy superparaelectrics with locally diverse ferroic distortion for high-capacitive energy storage," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Junming Gou & Guoxin Liu & Tianzi Yang & Xiaolian Liu & Yun Pan & Chang Liu & Yu Qian & Yao Liu & Ying Chen & Xuefeng Zhang & Tianyu Ma & Xiaobing Ren, 2025. "A high-entropy alloy showing gigapascal superelastic stress and nearly temperature-independent modulus," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    19. Huifen Yu & Tengfei Hu & Haoyu Wang & He Qi & Jie Wu & Ruonan Zhang & Weisan Fang & Xiaoming Shi & Zhengqian Fu & Liang Chen & Jun Chen, 2025. "Design of polymorphic heterogeneous shell in relaxor antiferroelectrics for ultrahigh capacitive energy storage," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Jian Wang & Zhong-Hui Shen & Wei Li & Run-Lin Liu & Yu-Lin Duan & Yang Shen & Han-Xing Liu & Ce-Wen Nan, 2025. "Dynamic atomic-scale electron avalanche breakdown in solid dielectrics," Nature Communications, Nature, vol. 16(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63584-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.