IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63852-x.html
   My bibliography  Save this article

Machine learning of charges and long-range interactions from energies and forces

Author

Listed:
  • Daniel S. King

    (UC Berkeley)

  • Dongjin Kim

    (UC Berkeley)

  • Peichen Zhong

    (UC Berkeley)

  • Bingqing Cheng

    (UC Berkeley
    UC Berkeley
    The Institute of Science and Technology Austria)

Abstract

Accurate modeling of long-range forces is critical in atomistic simulations, as they play a central role in determining the properties of material and chemical systems. However, standard machine learning interatomic potentials (MLIPs) often rely on short-range approximations, limiting their applicability to systems with significant electrostatics and dispersion forces. We recently introduced the Latent Ewald Summation (LES) method, which captures long-range electrostatics without explicitly learning atomic charges or charge equilibration. We benchmark LES on diverse and challenging systems, including charged molecules, ionic liquids, electrolyte solutions, polar dipeptides, surface adsorption, electrolyte/solid interfaces, and solid-solid interfaces. Here we show that LES can reproduce the exact atomic charges for classical systems with fixed charges and can infer dipole and quadrupole moments, as well as the dipole derivative with respect to atomic positions, for quantum mechanical systems. Moreover, LES can achieve better accuracy in energy and force predictions compared to methods that explicitly learn from charges.

Suggested Citation

  • Daniel S. King & Dongjin Kim & Peichen Zhong & Bingqing Cheng, 2025. "Machine learning of charges and long-range interactions from energies and forces," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63852-x
    DOI: 10.1038/s41467-025-63852-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63852-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63852-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63852-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.