IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63821-4.html
   My bibliography  Save this article

A doubly stochastic renewal framework for partitioning spiking variability

Author

Listed:
  • Cina Aghamohammadi

    (Princeton University
    Cold Spring Harbor Laboratory)

  • Chandramouli Chandrasekaran

    (Boston University
    Boston University
    Boston University
    Boston University)

  • Tatiana A. Engel

    (Princeton University
    Cold Spring Harbor Laboratory)

Abstract

The firing rate is a prevalent concept used to describe neural computations, but estimating dynamically changing firing rates from irregular spikes is challenging. An inhomogeneous Poisson process, the standard model for partitioning firing rate and spiking irregularity, cannot account for diverse spike statistics observed across neurons. We introduce a doubly stochastic renewal point process, a flexible mathematical framework for partitioning spiking variability, which captures the broad spectrum of spiking irregularity from periodic to super-Poisson. We validate our partitioning framework using intracellular voltage recordings and develop a method for estimating spiking irregularity from data. We find that the spiking irregularity of cortical neurons decreases from sensory to association areas and is nearly constant for each neuron under many conditions but can also change across task epochs. Spiking network models show that spiking irregularity depends on connectivity and can change with external input. These results help improve the precision of estimating firing rates on single trials and constrain mechanistic models of neural circuits.

Suggested Citation

  • Cina Aghamohammadi & Chandramouli Chandrasekaran & Tatiana A. Engel, 2025. "A doubly stochastic renewal framework for partitioning spiking variability," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63821-4
    DOI: 10.1038/s41467-025-63821-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63821-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63821-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    2. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    3. Mikhail Genkin & Krishna V. Shenoy & Chandramouli Chandrasekaran & Tatiana A. Engel, 2025. "The dynamics and geometry of choice in the premotor cortex," Nature, Nature, vol. 645(8079), pages 168-176, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Li & Mitchell Swerdloff & Tianyu She & Asiyah Rahman & Naveen Sharma & Reema Shah & Michael Castellano & Daniel Mogel & Jason Wu & Asim Ahmed & James San Miguel & Jared Cohn & Nikesh Shah & Raddy , 2023. "Robust odor identification in novel olfactory environments in mice," Nature Communications, Nature, vol. 14(1), pages 1-29, December.
    2. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    4. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    6. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Rishi Rajalingham & Hansem Sohn & Mehrdad Jazayeri, 2025. "Dynamic tracking of objects in the macaque dorsomedial frontal cortex," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    8. Yuan-hao Wu & Ella Podvalny & Max Levinson & Biyu J. He, 2024. "Network mechanisms of ongoing brain activity’s influence on conscious visual perception," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    10. Jean-Paul Noel & Edoardo Balzani & Cristina Savin & Dora E. Angelaki, 2024. "Context-invariant beliefs are supported by dynamic reconfiguration of single unit functional connectivity in prefrontal cortex of male macaques," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Katarzyna Jurewicz & Brianna J. Sleezer & Priyanka S. Mehta & Benjamin Y. Hayden & R. Becket Ebitz, 2024. "Irrational choices via a curvilinear representational geometry for value," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Nagaraj R. Mahajan & Shreesh P. Mysore, 2022. "Donut-like organization of inhibition underlies categorical neural responses in the midbrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Barbara Feulner & Matthew G. Perich & Raeed H. Chowdhury & Lee E. Miller & Juan A. Gallego & Claudia Clopath, 2022. "Small, correlated changes in synaptic connectivity may facilitate rapid motor learning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Noel Federman & Sebastián A. Romano & Macarena Amigo-Duran & Lucca Salomon & Antonia Marin-Burgin, 2024. "Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    16. João D. Semedo & Anna I. Jasper & Amin Zandvakili & Aravind Krishna & Amir Aschner & Christian K. Machens & Adam Kohn & Byron M. Yu, 2022. "Feedforward and feedback interactions between visual cortical areas use different population activity patterns," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Arno Onken & Jue Xie & Stefano Panzeri & Camillo Padoa-Schioppa, 2019. "Categorical encoding of decision variables in orbitofrontal cortex," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-27, October.
    19. Ellen Boven & Joseph Pemberton & Paul Chadderton & Richard Apps & Rui Ponte Costa, 2023. "Cerebro-cerebellar networks facilitate learning through feedback decoupling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Márton Albert Hajnal & Duy Tran & Zsombor Szabó & Andrea Albert & Karen Safaryan & Michael Einstein & Mauricio Vallejo Martelo & Pierre-Olivier Polack & Peyman Golshani & Gergő Orbán, 2024. "Shifts in attention drive context-dependent subspace encoding in anterior cingulate cortex in mice during decision making," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63821-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.