IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63047-4.html
   My bibliography  Save this article

Organic matter degradation by oceanic fungi differs between polar and non-polar waters

Author

Listed:
  • Kangli Guo

    (University of Vienna)

  • Zihao Zhao

    (University of Vienna)

  • Eva Breyer

    (University of Vienna
    Shanghai Ocean University)

  • Federico Baltar

    (University of Vienna
    Shanghai Ocean University)

Abstract

Recent discoveries have uncovered pelagic fungi as significant contributors to the recycling of organic matter in the ocean. However, their drivers and whether the environmental filtering on the functional role of prokaryotes also applies to pelagic fungi remain unknown. In this study, we employed the metagenomic and metatranscriptomic approaches to explore the fungi mediated organic matter degradation in the sunlit ocean. Samples were collected from the subtropical Atlantic Ocean (non-polar) to the Southern Ocean (polar), and differentiated between small (0.2 − 3 µm, SF) and large ( >3 µm, LF) size fractions, to study niche partitioning in fungal communities and functions. Fungi accounted for 2–5% of eukaryotic genes and transcripts. Fungi contributed over 3% of eukaryotic carbohydrate-active enzymes (CAZymes) transcripts but less than 0.5% of protease transcripts, highlighting their specialized role in carbohydrate degradation. Non-polar and polar regions exhibited distinct fungal community composition and metabolic functions, potentially disrupting the balance of organic matter storage and cycling in these ecologically sensitive regions. Temperature emerged as a key driver of fungal CAZyme activity, revealing sensitivity to ocean warming. Our findings underscore the active role of pelagic fungi in organic matter degradation while revealing the environmental and ecological factors shaping their functional contributions across global oceanic regions.

Suggested Citation

  • Kangli Guo & Zihao Zhao & Eva Breyer & Federico Baltar, 2025. "Organic matter degradation by oceanic fungi differs between polar and non-polar waters," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63047-4
    DOI: 10.1038/s41467-025-63047-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63047-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63047-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63047-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.