IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57324-5.html
   My bibliography  Save this article

TopEC: prediction of Enzyme Commission classes by 3D graph neural networks and localized 3D protein descriptor

Author

Listed:
  • Karel Weg

    (Forschungszentrum Jülich GmbH)

  • Erinc Merdivan

    (Helmholtz AI Central Unit, Ingolstädter Landstraße 1)

  • Marie Piraud

    (Helmholtz AI Central Unit, Ingolstädter Landstraße 1)

  • Holger Gohlke

    (Forschungszentrum Jülich GmbH
    Heinrich Heine University Düsseldorf)

Abstract

Tools available for inferring enzyme function from general sequence, fold, or evolutionary information are generally successful. However, they can lead to misclassification if a deviation in local structural features influences the function. Here, we present TopEC, a 3D graph neural network based on a localized 3D descriptor to learn chemical reactions of enzymes from enzyme structures and predict Enzyme Commission (EC) classes. Using message-passing frameworks, we include distance and angle information to significantly improve the predictive performance for EC classification (F-score: 0.72) compared to regular 2D graph neural networks. We trained networks without fold bias that can classify enzyme structures for a vast functional space (>800 ECs). Our model is robust to uncertainties in binding site locations and similar functions in distinct binding sites. We observe that TopEC networks learn from an interplay between biochemical features and local shape-dependent features. TopEC is available as a repository on GitHub: https://github.com/IBG4-CBCLab/TopEC and https://doi.org/10.25838/d5p-66 .

Suggested Citation

  • Karel Weg & Erinc Merdivan & Marie Piraud & Holger Gohlke, 2025. "TopEC: prediction of Enzyme Commission classes by 3D graph neural networks and localized 3D protein descriptor," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57324-5
    DOI: 10.1038/s41467-025-57324-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57324-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57324-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan Feehan & Meghan W. Franklin & Joanna S. G. Slusky, 2021. "Machine learning differentiates enzymatic and non-enzymatic metals in proteins," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    3. Morgan N. Price & Kelly M. Wetmore & R. Jordan Waters & Mark Callaghan & Jayashree Ray & Hualan Liu & Jennifer V. Kuehl & Ryan A. Melnyk & Jacob S. Lamson & Yumi Suh & Hans K. Carlson & Zuelma Esquive, 2018. "Mutant phenotypes for thousands of bacterial genes of unknown function," Nature, Nature, vol. 557(7706), pages 503-509, May.
    4. Mark Paetzel & Ross E. Dalbey & Natalie C. J. Strynadka, 1998. "Erratum: Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor," Nature, Nature, vol. 396(6712), pages 707-707, December.
    5. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    6. Yongcheng Wang & Yingjiu Zhang & Ya Ha, 2006. "Crystal structure of a rhomboid family intramembrane protease," Nature, Nature, vol. 444(7116), pages 179-180, November.
    7. Hannah K. Wayment-Steele & Adedolapo Ojoawo & Renee Otten & Julia M. Apitz & Warintra Pitsawong & Marc Hömberger & Sergey Ovchinnikov & Lucy Colwell & Dorothee Kern, 2024. "Predicting multiple conformations via sequence clustering and AlphaFold2," Nature, Nature, vol. 625(7996), pages 832-839, January.
    8. Vladimir Gligorijević & P. Douglas Renfrew & Tomasz Kosciolek & Julia Koehler Leman & Daniel Berenberg & Tommi Vatanen & Chris Chandler & Bryn C. Taylor & Ian M. Fisk & Hera Vlamakis & Ramnik J. Xavie, 2021. "Structure-based protein function prediction using graph convolutional networks," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Mark Paetzel & Ross E. Dalbey & Natalie C. J. Strynadka, 1998. "Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor," Nature, Nature, vol. 396(6707), pages 186-190, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqi Gao & Chenran Jiang & Jiawen Zhang & Xiaosen Jiang & Lanqing Li & Peilin Zhao & Huanming Yang & Yong Huang & Jia Li, 2023. "Hierarchical graph learning for protein–protein interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ron S. Boger & Seyone Chithrananda & Anastasios N. Angelopoulos & Peter H. Yoon & Michael I. Jordan & Jennifer A. Doudna, 2025. "Functional protein mining with conformal guarantees," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Stefanie Duller & Simone Vrbancic & Łukasz Szydłowski & Alexander Mahnert & Marcus Blohs & Michael Predl & Christina Kumpitsch & Verena Zrim & Christoph Högenauer & Tomasz Kosciolek & Ruth A. Schmitz , 2024. "Targeted isolation of Methanobrevibacter strains from fecal samples expands the cultivated human archaeome," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yaghsha Javed & Muhammad Saleem & Hamna Tariq & Kainat Ramzan & Sadia Javeed & Hafiz Abdul Moeed, 2024. "Genetic Variations in SNCA Gene and their Potential Therapeutic Implications for Parkinson’s Disease," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(11), pages 3368-3384, November.
    5. Julia Koehler Leman & Pawel Szczerbiak & P. Douglas Renfrew & Vladimir Gligorijevic & Daniel Berenberg & Tommi Vatanen & Bryn C. Taylor & Chris Chandler & Stefan Janssen & Andras Pataki & Nick Carrier, 2023. "Sequence-structure-function relationships in the microbial protein universe," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Marco Malatesta & Emanuele Fornasier & Martino Luigi Salvo & Angela Tramonti & Erika Zangelmi & Alessio Peracchi & Andrea Secchi & Eugenia Polverini & Gabriele Giachin & Roberto Battistutta & Roberto , 2024. "One substrate many enzymes virtual screening uncovers missing genes of carnitine biosynthesis in human and mouse," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Simon L. Dürr & Andrea Levy & Ursula Rothlisberger, 2023. "Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    11. Surabhi Kokane & Ashutosh Gulati & Pascal F. Meier & Rei Matsuoka & Tanadet Pipatpolkai & Giuseppe Albano & Tin Manh Ho & Lucie Delemotte & Daniel Fuster & David Drew, 2025. "PIP2-mediated oligomerization of the endosomal sodium/proton exchanger NHE9," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    12. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative Artificial Intelligence," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, pages 7-46, National Bureau of Economic Research, Inc.
    14. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    17. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57324-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.