IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62827-2.html
   My bibliography  Save this article

Reconfigurable single-walled carbon nanotube ferroelectric field-effect transistors

Author

Listed:
  • Dongjoon Rhee

    (University of Pennsylvania
    Yonsei University
    Kookmin University)

  • Kwan-Ho Kim

    (University of Pennsylvania)

  • Jeffrey Zheng

    (University of Pennsylvania)

  • Seunguk Song

    (University of Pennsylvania
    Sungkyunkwan University (SKKU)
    Institute of Basic Science (IBS))

  • Lian-Mao Peng

    (Peking University)

  • Roy H. Olsson

    (University of Pennsylvania)

  • Joohoon Kang

    (Yonsei University)

  • Deep Jariwala

    (University of Pennsylvania)

Abstract

Reconfigurable devices have garnered significant attention for alleviating the scaling requirements of conventional complementary metal-oxide-semiconductor technology by reducing the number of components needed to construct functional circuits. Prior work required continuous voltage application to programming gate terminal(s) alongside the primary gate, undermining the advantages of reconfigurable devices in achieving compact and power-efficient integrated circuits. Here, we realize scalable reconfigurable devices based on single-gate field-effect transistors that integrate highly aligned single-walled carbon nanotube channels with a ferroelectric aluminum scandium nitride gate dielectric. The devices exhibit ambipolar characteristics with high, well-balanced on-state currents (~270 μA μm−1 at a drain voltage of 3 V) and on/off ratios exceeding 105, along with large memory windows and excellent retention behavior. Ferroelectric polarization switching also enables reconfiguration between p- and n-channel transistors, allowing ternary content-addressable memory to be realized with far fewer devices than circuits based on conventional silicon technology or alternative memory devices.

Suggested Citation

  • Dongjoon Rhee & Kwan-Ho Kim & Jeffrey Zheng & Seunguk Song & Lian-Mao Peng & Roy H. Olsson & Joohoon Kang & Deep Jariwala, 2025. "Reconfigurable single-walled carbon nanotube ferroelectric field-effect transistors," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62827-2
    DOI: 10.1038/s41467-025-62827-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62827-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62827-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Gage Hills & Christian Lau & Andrew Wright & Samuel Fuller & Mindy D. Bishop & Tathagata Srimani & Pritpal Kanhaiya & Rebecca Ho & Aya Amer & Yosi Stein & Denis Murphy & Arvind & Anantha Chandrakasan , 2019. "Modern microprocessor built from complementary carbon nanotube transistors," Nature, Nature, vol. 572(7771), pages 595-602, August.
    3. Max M. Shulaker & Gage Hills & Rebecca S. Park & Roger T. Howe & Krishna Saraswat & H.-S. Philip Wong & Subhasish Mitra, 2017. "Three-dimensional integration of nanotechnologies for computing and data storage on a single chip," Nature, Nature, vol. 547(7661), pages 74-78, July.
    4. Isabelle Ferain & Cynthia A. Colinge & Jean-Pierre Colinge, 2011. "Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors," Nature, Nature, vol. 479(7373), pages 310-316, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Su & Xiao Li & Linhai Li & Dehua Yang & Futian Wang & Xiaojun Wei & Weiya Zhou & Hiromichi Kataura & Sishen Xie & Huaping Liu, 2023. "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Guanhua Long & Yuru Wang & Tianshun Bai & Wangchang Li & Panpan Zhang & Xiaosong Deng & Xiang Cai & Meiqi Xi & Yanxia Lin & Xiaohan Cheng & Chenwei Fan & Fan Xia & Xiao Luo & Zhishuai Zhang & Xuelei L, 2025. "Super-saturated complementary carbon nanotube transistors with intrinsic gain singularities," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Yuxuan Zhang & You Meng & Liqiang Wang & Changyong Lan & Quan Quan & Wei Wang & Zhengxun Lai & Weijun Wang & Yezhan Li & Di Yin & Dengji Li & Pengshan Xie & Dong Chen & Zhe Yang & SenPo Yip & Yang Lu , 2024. "Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Betz, Ulrich A.K. & Arora, Loukik & Assal, Reem A. & Azevedo, Hatylas & Baldwin, Jeremy & Becker, Michael S. & Bostock, Stefan & Cheng, Vinton & Egle, Tobias & Ferrari, Nicola & Schneider-Futschik, El, 2023. "Game changers in science and technology - now and beyond," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    6. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Guanhua Long & Wanlin Jin & Fan Xia & Yuru Wang & Tianshun Bai & Xingxing Chen & Xuelei Liang & Lian-Mao Peng & Youfan Hu, 2022. "Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Hugh Greatorex & Ole Richter & Michele Mastella & Madison Cotteret & Philipp Klein & Maxime Fabre & Arianna Rubino & Willian Soares Girão & Junren Chen & Martin Ziegler & Laura Bégon-Lours & Giacomo I, 2025. "A neuromorphic processor with on-chip learning for beyond-CMOS device integration," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Fernando Aguirre & Abu Sebastian & Manuel Gallo & Wenhao Song & Tong Wang & J. Joshua Yang & Wei Lu & Meng-Fan Chang & Daniele Ielmini & Yuchao Yang & Adnan Mehonic & Anthony Kenyon & Marco A. Villena, 2024. "Hardware implementation of memristor-based artificial neural networks," Nature Communications, Nature, vol. 15(1), pages 1-40, December.
    10. Wenhui Wang & Ke Li & Jun Lan & Mei Shen & Zhongrui Wang & Xuewei Feng & Hongyu Yu & Kai Chen & Jiamin Li & Feichi Zhou & Longyang Lin & Panpan Zhang & Yida Li, 2023. "CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Yi Wan & En Li & Zhihao Yu & Jing-Kai Huang & Ming-Yang Li & Ang-Sheng Chou & Yi-Te Lee & Chien-Ju Lee & Hung-Chang Hsu & Qin Zhan & Areej Aljarb & Jui-Han Fu & Shao-Pin Chiu & Xinran Wang & Juhn-Jong, 2022. "Low-defect-density WS2 by hydroxide vapor phase deposition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Ying Xie & Yue Li & Zhisheng Peng & Chengyu Wang & Zanlin Qiu & Xinyi Cai & Tinglu Song & Jia Si & Xiaoxu Zhao & Liu Qian & Ziqiang Zhao & Jin Zhang, 2025. "Nano-seeding catalysts for high-density arrays of horizontally aligned carbon nanotubes with wafer-scale uniformity," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Zuopu Zhou & Hongtao Zhong & Leming Jiao & Zijie Zheng & Huazhong Yang & Thomas Kämpfe & Kai Ni & Xueqing Li & Xiao Gong, 2025. "Charge-domain content addressable memory based on ferroelectric capacitive memory for reliable and energy-efficient one-shot learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62827-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.