IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62666-1.html
   My bibliography  Save this article

Short-range order stabilizes a cubic iron alloy in Earth’s inner core

Author

Listed:
  • Zhi Li

    (The Abdus Salam International Centre for Theoretical Physics)

  • Sandro Scandolo

    (The Abdus Salam International Centre for Theoretical Physics)

Abstract

Earth’s inner core consists of iron (Fe) alloyed with minor light elements, predominantly silicon (Si), yet the crystal structure and seismic velocities of Fe-Si alloys at inner-core conditions remain poorly constrained. Ab-initio methods struggle with the alloy’s vast configurational complexity, limiting reliable property predictions. To overcome this, here we integrate a hybrid Monte Carlo sampling algorithm with a deep-learning interatomic potential to compute the Fe-Si binary phase diagram and sound velocities at inner-core boundary pressures. A complex phase diagram emerges, featuring the re-entrance of a body-centered cubic (bcc) phase stabilized by pronounced short-range ordering of the Si atoms. The bcc phase reproduces key seismic features of the inner core, including low shear-wave velocities and seismic anisotropy, more faithfully than other competing close-packed structures, making it a leading candidate for the inner-core structure. Our results underscore the importance of accurately describing light-element effects on Earth’s core properties.

Suggested Citation

  • Zhi Li & Sandro Scandolo, 2025. "Short-range order stabilizes a cubic iron alloy in Earth’s inner core," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62666-1
    DOI: 10.1038/s41467-025-62666-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62666-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62666-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62666-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.