IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62666-1.html
   My bibliography  Save this article

Short-range order stabilizes a cubic iron alloy in Earth’s inner core

Author

Listed:
  • Zhi Li

    (The Abdus Salam International Centre for Theoretical Physics)

  • Sandro Scandolo

    (The Abdus Salam International Centre for Theoretical Physics)

Abstract

Earth’s inner core consists of iron (Fe) alloyed with minor light elements, predominantly silicon (Si), yet the crystal structure and seismic velocities of Fe-Si alloys at inner-core conditions remain poorly constrained. Ab-initio methods struggle with the alloy’s vast configurational complexity, limiting reliable property predictions. To overcome this, here we integrate a hybrid Monte Carlo sampling algorithm with a deep-learning interatomic potential to compute the Fe-Si binary phase diagram and sound velocities at inner-core boundary pressures. A complex phase diagram emerges, featuring the re-entrance of a body-centered cubic (bcc) phase stabilized by pronounced short-range ordering of the Si atoms. The bcc phase reproduces key seismic features of the inner core, including low shear-wave velocities and seismic anisotropy, more faithfully than other competing close-packed structures, making it a leading candidate for the inner-core structure. Our results underscore the importance of accurately describing light-element effects on Earth’s core properties.

Suggested Citation

  • Zhi Li & Sandro Scandolo, 2025. "Short-range order stabilizes a cubic iron alloy in Earth’s inner core," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62666-1
    DOI: 10.1038/s41467-025-62666-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62666-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62666-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruopeng Zhang & Shiteng Zhao & Jun Ding & Yan Chong & Tao Jia & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2020. "Short-range order and its impact on the CrCoNi medium-entropy alloy," Nature, Nature, vol. 581(7808), pages 283-287, May.
    2. L. Dubrovinsky & N. Dubrovinskaia & F. Langenhorst & D. Dobson & D. Rubie & C. Geßmann & I. A. Abrikosov & B. Johansson & V. I. Baykov & L. Vitos & T. Le Bihan & W. A. Crichton & V. Dmitriev & H.-P. W, 2003. "Iron–silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle," Nature, Nature, vol. 422(6927), pages 58-61, March.
    3. Xuefei Chen & Qi Wang & Zhiying Cheng & Mingliu Zhu & Hao Zhou & Ping Jiang & Lingling Zhou & Qiqi Xue & Fuping Yuan & Jing Zhu & Xiaolei Wu & En Ma, 2021. "Direct observation of chemical short-range order in a medium-entropy alloy," Nature, Nature, vol. 592(7856), pages 712-716, April.
    4. Yu He & Shichuan Sun & Duck Young Kim & Bo Gyu Jang & Heping Li & Ho-kwang Mao, 2022. "Superionic iron alloys and their seismic velocities in Earth’s inner core," Nature, Nature, vol. 602(7896), pages 258-262, February.
    5. E. Edmund & G. Morard & M. A. Baron & A. Rivoldini & S. Yokoo & S. Boccato & K. Hirose & A. Pakhomova & D. Antonangeli, 2022. "The Fe-FeSi phase diagram at Mercury’s core conditions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Suyu Fu & Stella Chariton & Vitali B. Prakapenka & Sang-Heon Shim, 2023. "Core origin of seismic velocity anomalies at Earth’s core–mantle boundary," Nature, Nature, vol. 615(7953), pages 646-651, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ying Han & Hangman Chen & Yongwen Sun & Jian Liu & Shaolou Wei & Bijun Xie & Zhiyu Zhang & Yingxin Zhu & Meng Li & Judith Yang & Wen Chen & Penghui Cao & Yang Yang, 2024. "Ubiquitous short-range order in multi-principal element alloys," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Qian Zhang & Ranming Niu & Ying Liu & Jiaxi Jiang & Fan Xu & Xuan Zhang & Julie M. Cairney & Xianghai An & Xiaozhou Liao & Huajian Gao & Xiaoyan Li, 2023. "Room-temperature super-elongation in high-entropy alloy nanopillars," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Jingyuan Yan & Sheng Yin & Mark Asta & Robert O. Ritchie & Jun Ding & Qian Yu, 2022. "Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Vinícius P. Bacurau & Pedro A. F. P. Moreira & Gustavo Bertoli & Angelo F. Andreoli & Eric Mazzer & Flávio F. Assis & Piter Gargarella & Guilherme Koga & Guilherme C. Stumpf & Santiago J. A. Figueroa , 2024. "Comprehensive analysis of ordering in CoCrNi and CrNi2 alloys," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Yue Li & Ye Wei & Zhangwei Wang & Xiaochun Liu & Timoteo Colnaghi & Liuliu Han & Ziyuan Rao & Xuyang Zhou & Liam Huber & Raynol Dsouza & Yilun Gong & Jörg Neugebauer & Andreas Marek & Markus Rampp & S, 2023. "Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Cheng-Hsien Yeh & Wen-Dung Hsu & Bernard Haochih Liu & Chan-Shan Yang & Chen-Yun Kuan & Yuan-Chun Chang & Kai-Sheng Huang & Song-Syun Jhang & Chia-Yen Lu & Peter K. Liaw & Chuan-Feng Shih, 2024. "Low-frequency conductivity of low wear high-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Daijo Ikuta & Eiji Ohtani & Hiroshi Fukui & Takeshi Sakai & Daisuke Ishikawa & Alfred Q. R. Baron, 2022. "Sound velocity of hexagonal close-packed iron to the Earth’s inner core pressure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Shenghua Wu & Hanne S. Soreide & Bin Chen & Jianjun Bian & Chong Yang & Chunan Li & Peng Zhang & Pengming Cheng & Jinyu Zhang & Yong Peng & Gang Liu & Yanjun Li & Hans J. Roven & Jun Sun, 2022. "Freezing solute atoms in nanograined aluminum alloys via high-density vacancies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Thuany Costa de Lima & Thanh-Son Phạm & Xiaolong Ma & Hrvoje Tkalčić, 2023. "An estimate of absolute shear-wave speed in the Earth’s inner core," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Changyong Cai & Shuanggen Wu & Yunfei Zhang & Fenfang Li & Zhijian Tan & Shengyi Dong, 2024. "Bulk transparent supramolecular glass enabled by host–guest molecular recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Yifan Tian & Peiyu Zhang & Wei Zhang & Xiaolei Feng & Simon A. T. Redfern & Hanyu Liu, 2024. "Iron alloys of volatile elements in the deep Earth’s interior," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Wuyang Ren & Wenhua Xue & Shuping Guo & Ran He & Liangzi Deng & Shaowei Song & Andrei Sotnikov & Kornelius Nielsch & Jeroen Brink & Guanhui Gao & Shuo Chen & Yimo Han & Jiang Wu & Ching-Wu Chu & Zhimi, 2023. "Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Yamei Mao & Qinyang Zhao & Runqi Zhang & Ping Guo & Yongnan Chen & Yongqing Zhao, 2025. "Trifunctional local-range order oxygen structure enhanced strength-ductility and fatigue resistance in large-scale metastable titanium alloy," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62666-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.