IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62646-5.html
   My bibliography  Save this article

Trifunctional local-range order oxygen structure enhanced strength-ductility and fatigue resistance in large-scale metastable titanium alloy

Author

Listed:
  • Yamei Mao

    (Chang’an University)

  • Qinyang Zhao

    (Chang’an University)

  • Runqi Zhang

    (Northeastern University
    Northwest Institute for Non-ferrous Metal Research)

  • Ping Guo

    (Northwest Institute for Non-ferrous Metal Research)

  • Yongnan Chen

    (Chang’an University)

  • Yongqing Zhao

    (Chang’an University
    Northwest Institute for Non-ferrous Metal Research)

Abstract

Research on high-performance Ti alloys incorporating oxygen (O) has remained a laboratory procedure and is hindered by the unresolved issue of O segregation-driven failure. Here, we demonstrate that O can tailor a nanoscale local range order O (LRO-O) structure between the oxide and random interstitials in Ti alloy. We introduce 0.36 wt% O into metastable Ti-5Al-5Mo-5V-3Cr alloy using a short-term powder metallurgy approach to produces large-scale materials. The LRO-O structure in designed alloy prevents crack initiation by promoting the active nucleation of -type dislocations and altering the slip modes during tensile and fatigue failure. The alloy has high strength (1.7 GPa), elongation (7.9%), and fatigue strength (1058.3 MPa), which outperforms many high-strength, high-O Ti alloys. Our findings provide a scalable, practical route to superior mechanical properties for Ti alloys without costly alloying elements.

Suggested Citation

  • Yamei Mao & Qinyang Zhao & Runqi Zhang & Ping Guo & Yongnan Chen & Yongqing Zhao, 2025. "Trifunctional local-range order oxygen structure enhanced strength-ductility and fatigue resistance in large-scale metastable titanium alloy," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62646-5
    DOI: 10.1038/s41467-025-62646-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62646-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62646-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Han & Hangman Chen & Yongwen Sun & Jian Liu & Shaolou Wei & Bijun Xie & Zhiyu Zhang & Yingxin Zhu & Meng Li & Judith Yang & Wen Chen & Penghui Cao & Yang Yang, 2024. "Ubiquitous short-range order in multi-principal element alloys," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Bo-Yu Liu & Jian Wang & Bin Li & Lu Lu & Xi-Yan Zhang & Zhi-Wei Shan & Ju Li & Chun-Lin Jia & Jun Sun & Evan Ma, 2014. "Twinning-like lattice reorientation without a crystallographic twinning plane," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    3. Yong Zhang & Chenyun He & Qin Yu & Xiao Li & Xiaogang Wang & Yin Zhang & Ji Wang & Chao Jiang & Yunfei Jia & Xian-Cheng Zhang & Binhan Sun & Robert O. Ritchie & Shan-Tung Tu, 2024. "Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Zhifeng Lei & Xiongjun Liu & Yuan Wu & Hui Wang & Suihe Jiang & Shudao Wang & Xidong Hui & Yidong Wu & Baptiste Gault & Paraskevas Kontis & Dierk Raabe & Lin Gu & Qinghua Zhang & Houwen Chen & Hongtao, 2018. "Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes," Nature, Nature, vol. 563(7732), pages 546-550, November.
    5. L. Choisez & L. Ding & M. Marteleur & H. Idrissi & T. Pardoen & P. J. Jacques, 2020. "High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Heng Li & Hongxiang Zong & Suzhi Li & Shenbao Jin & Yan Chen & Matthew J. Cabral & Bing Chen & Qianwei Huang & Yan Chen & Yang Ren & Kaiyuan Yu & Shuang Han & Xiangdong Ding & Gang Sha & Jianshe Lian , 2022. "Uniting tensile ductility with ultrahigh strength via composition undulation," Nature, Nature, vol. 604(7905), pages 273-279, April.
    7. Jingqi Zhang & Yingang Liu & Gang Sha & Shenbao Jin & Ziyong Hou & Mohamad Bayat & Nan Yang & Qiyang Tan & Yu Yin & Shiyang Liu & Jesper Henri Hattel & Matthew Dargusch & Xiaoxu Huang & Ming-Xing Zhan, 2022. "Designing against phase and property heterogeneities in additively manufactured titanium alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Zhaoxuan Wu & W. A. Curtin, 2015. "The origins of high hardening and low ductility in magnesium," Nature, Nature, vol. 526(7571), pages 62-67, October.
    9. Ruopeng Zhang & Shiteng Zhao & Jun Ding & Yan Chong & Tao Jia & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2020. "Short-range order and its impact on the CrCoNi medium-entropy alloy," Nature, Nature, vol. 581(7808), pages 283-287, May.
    10. Tingting Song & Zibin Chen & Xiangyuan Cui & Shenglu Lu & Hansheng Chen & Hao Wang & Tony Dong & Bailiang Qin & Kang Cheung Chan & Milan Brandt & Xiaozhou Liao & Simon P. Ringer & Ma Qian, 2023. "Strong and ductile titanium–oxygen–iron alloys by additive manufacturing," Nature, Nature, vol. 618(7963), pages 63-68, June.
    11. Arun Devaraj & Vineet V. Joshi & Ankit Srivastava & Sandeep Manandhar & Vladimir Moxson & Volodymyr A. Duz & Curt Lavender, 2016. "A low-cost hierarchical nanostructured beta-titanium alloy with high strength," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmudul Islam & Killian Sheriff & Yifan Cao & Rodrigo Freitas, 2025. "Nonequilibrium chemical short-range order in metallic alloys," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Bo-Yu Liu & Zhen Zhang & Fei Liu & Nan Yang & Bin Li & Peng Chen & Yu Wang & Jin-Hua Peng & Ju Li & En Ma & Zhi-Wei Shan, 2022. "Rejuvenation of plasticity via deformation graining in magnesium," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Shubo Gao & Weiming Ji & Qi Zhu & Asker Jarlöv & Xueyu Bai & Xiaojun Shen & Yong Liu & Mui Ling Sharon Nai & Huajian Gao & Kun Zhou, 2025. "Unveiling the mechanisms of strength–ductility synergy in an additively manufactured nanolamellar high-entropy alloy," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    9. Chongle Zhang & Shuaiyang Liu & Jinyu Zhang & Dongdong Zhang & Jie Kuang & Xiangyun Bao & Gang Liu & Jun Sun, 2023. "Trifunctional nanoprecipitates ductilize and toughen a strong laminated metastable titanium alloy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Meiyuan Jiao & Zhifeng Lei & Yuan Wu & Jinlong Du & Xiao-Ye Zhou & Wenyue Li & Xiaoyuan Yuan & Xiaochun Liu & Xiangyu Zhu & Shudao Wang & Huihui Zhu & Peipei Cao & Xiongjun Liu & Xiaobin Zhang & Hui W, 2023. "Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. O. El Atwani & H. T. Vo & M. A. Tunes & C. Lee & A. Alvarado & N. Krienke & J. D. Poplawsky & A. A. Kohnert & J. Gigax & W.-Y. Chen & M. Li & Y. Q. Wang & J. S. Wróbel & D. Nguyen-Manh & J. K. S. Bald, 2023. "A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. P. H. F. Oliveira & C. L. G. P. Martins & G. C. Stumpf & J. Spadotto & E. J. Pickering & W. J. Botta & C. Bolfarini & F. G. Coury, 2025. "Exploring the relative influence of atomic parameters on solid solution strengthening," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    15. Shuo Qu & Liqiang Wang & Shengbiao Zhang & Chenfeng Yang & Hou Yi Chia & Gengbo Wu & Zongxin Hu & Junhao Ding & Wentao Yan & Yang Zhang & Chi Hou Chan & Wen Chen & Yang Lu & Xu Song, 2025. "Oxide-dispersion-enabled laser additive manufacturing of high-resolution copper," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. David Redka & Saleem Ayaz Khan & Edoardo Martino & Xavier Mettan & Luka Ciric & Davor Tolj & Trpimir Ivšić & Andreas Held & Marco Caputo & Eduardo Bonini Guedes & Vladimir N. Strocov & Igor Marco & Hu, 2024. "Interplay between disorder and electronic correlations in compositionally complex alloys," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Lin Jiang & Mingyu Gong & Jian Wang & Zhiliang Pan & Xin Wang & Dalong Zhang & Y. Morris Wang & Jim Ciston & Andrew M. Minor & Mingjie Xu & Xiaoqing Pan & Timothy J. Rupert & Subhash Mahajan & Enrique, 2022. "Visualization and validation of twin nucleation and early-stage growth in magnesium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Chongle Zhang & Xiangyun Bao & Mengyuan Hao & Wei Chen & Dongdong Zhang & Dong Wang & Jinyu Zhang & Gang Liu & Jun Sun, 2022. "Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Yinghao Zhou & Weicheng Xiao & Dawei Wang & Xu Tang & Zheling Shen & Weipeng Li & Jun Zhang & Shijun Zhao & Junhua Luan & Zibing An & Rongpei Shi & Ming Yan & Xiaodong. Han & C. T. Liu & Yilu Zhao & T, 2025. "Highly printable, strong, and ductile ordered intermetallic alloy," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Qian Zhang & Ranming Niu & Ying Liu & Jiaxi Jiang & Fan Xu & Xuan Zhang & Julie M. Cairney & Xianghai An & Xiaozhou Liao & Huajian Gao & Xiaoyan Li, 2023. "Room-temperature super-elongation in high-entropy alloy nanopillars," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62646-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.