IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62385-7.html
   My bibliography  Save this article

Towards generalist foundation model for radiology by leveraging web-scale 2D&3D medical data

Author

Listed:
  • Chaoyi Wu

    (Shanghai Jiao Tong University
    Shanghai Artificial Intelligence Laboratory)

  • Xiaoman Zhang

    (Shanghai Jiao Tong University
    Shanghai Artificial Intelligence Laboratory)

  • Ya Zhang

    (Shanghai Jiao Tong University
    Shanghai Artificial Intelligence Laboratory)

  • Hui Hui

    (Shanghai Jiao Tong University)

  • Yanfeng Wang

    (Shanghai Jiao Tong University
    Shanghai Artificial Intelligence Laboratory)

  • Weidi Xie

    (Shanghai Jiao Tong University
    Shanghai Artificial Intelligence Laboratory)

Abstract

In this study, as a proof-of-concept, we aim to initiate the development of Radiology Foundation Model, termed as RadFM. We consider three perspectives: dataset construction, model design, and thorough evaluation, concluded as follows: (i), we contribute 4 multimodal datasets with 13M 2D images and 615K 3D scans. When combined with a vast collection of existing datasets, this forms our training dataset, termed as Medical Multi-modal Dataset, MedMD. (ii), we propose an architecture that enables to integrate text input with 2D or 3D medical scans, and generates responses for diverse radiologic tasks, including diagnosis, visual question answering, report generation, and rationale diagnosis; (iii), beyond evaluation on 9 existing datasets, we propose a new benchmark, RadBench, comprising three tasks aiming to assess foundation models comprehensively. We conduct both automatic and human evaluations on RadBench. RadFM outperforms former accessible multi-modal foundation models, including GPT-4V. Additionally, we adapt RadFM for diverse public benchmarks, surpassing various existing SOTAs.

Suggested Citation

  • Chaoyi Wu & Xiaoman Zhang & Ya Zhang & Hui Hui & Yanfeng Wang & Weidi Xie, 2025. "Towards generalist foundation model for radiology by leveraging web-scale 2D&3D medical data," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62385-7
    DOI: 10.1038/s41467-025-62385-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62385-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62385-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Moor & Oishi Banerjee & Zahra Shakeri Hossein Abad & Harlan M. Krumholz & Jure Leskovec & Eric J. Topol & Pranav Rajpurkar, 2023. "Foundation models for generalist medical artificial intelligence," Nature, Nature, vol. 616(7956), pages 259-265, April.
    2. Karan Singhal & Shekoofeh Azizi & Tao Tu & S. Sara Mahdavi & Jason Wei & Hyung Won Chung & Nathan Scales & Ajay Tanwani & Heather Cole-Lewis & Stephen Pfohl & Perry Payne & Martin Seneviratne & Paul G, 2023. "Publisher Correction: Large language models encode clinical knowledge," Nature, Nature, vol. 620(7973), pages 19-19, August.
    3. Karan Singhal & Shekoofeh Azizi & Tao Tu & S. Sara Mahdavi & Jason Wei & Hyung Won Chung & Nathan Scales & Ajay Tanwani & Heather Cole-Lewis & Stephen Pfohl & Perry Payne & Martin Seneviratne & Paul G, 2023. "Large language models encode clinical knowledge," Nature, Nature, vol. 620(7972), pages 172-180, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soroosh Tayebi Arasteh & Tianyu Han & Mahshad Lotfinia & Christiane Kuhl & Jakob Nikolas Kather & Daniel Truhn & Sven Nebelung, 2024. "Large language models streamline automated machine learning for clinical studies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yujin Oh & Sangjoon Park & Hwa Kyung Byun & Yeona Cho & Ik Jae Lee & Jin Sung Kim & Jong Chul Ye, 2024. "LLM-driven multimodal target volume contouring in radiation oncology," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Maxime Griot & Coralie Hemptinne & Jean Vanderdonckt & Demet Yuksel, 2025. "Large Language Models lack essential metacognition for reliable medical reasoning," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Ching-Nam Hang & Pei-Duo Yu & Roberto Morabito & Chee-Wei Tan, 2024. "Large Language Models Meet Next-Generation Networking Technologies: A Review," Future Internet, MDPI, vol. 16(10), pages 1-29, October.
    5. Arslon Ruziboev & Dilmurod Turimov & Jiyoun Kim & Wooseong Kim, 2025. "Multiclass Classification of Sarcopenia Severity in Korean Adults Using Machine Learning and Model Fusion Approaches," Mathematics, MDPI, vol. 13(18), pages 1-22, September.
    6. Chao-Chun Hsu & Ziad Obermeyer & Chenhao Tan, 2025. "A machine learning model using clinical notes to identify physician fatigue," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Ali Nemati & Mohammad Assadi Shalmani & Qiang Lu & Jake Luo, 2025. "Benchmarking Large Language Models from Open and Closed Source Models to Apply Data Annotation for Free-Text Criteria in Healthcare," Future Internet, MDPI, vol. 17(4), pages 1-27, March.
    8. Yang Zhao & Pu Wang & Yibo Zhao & Hongru Du & Hao Frank Yang, 2025. "SafeTraffic Copilot: adapting large language models for trustworthy traffic safety assessments and decision interventions," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    9. Ofir Ben Shoham & Nadav Rappoport, 2024. "CPLLM: Clinical prediction with large language models," PLOS Digital Health, Public Library of Science, vol. 3(12), pages 1-15, December.
    10. Sheng Wang & Fangyuan Zhao & Dechao Bu & Yunwei Lu & Ming Gong & Hongjie Liu & Zhaohui Yang & Xiaoxi Zeng & Zhiyuan Yuan & Baoping Wan & Jingbo Sun & Yang Wu & Lianhe Zhao & Xirun Wan & Wei Huang & Ta, 2025. "LINS: A general medical Q&A framework for enhancing the quality and credibility of LLM-generated responses," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    11. Venkat Ram Reddy Ganuthula & Krishna Kumar Balaraman, 2025. "The Paradox of Professional Input: How Expert Collaboration with AI Systems Shapes Their Future Value," Papers 2504.12654, arXiv.org.
    12. Cheng-Yi Li & Kao-Jung Chang & Cheng-Fu Yang & Hsin-Yu Wu & Wenting Chen & Hritik Bansal & Ling Chen & Yi-Ping Yang & Yu-Chun Chen & Shih-Pin Chen & Shih-Jen Chen & Jiing-Feng Lirng & Kai-Wei Chang & , 2025. "Towards a holistic framework for multimodal LLM in 3D brain CT radiology report generation," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    13. Kevin Wu & Eric Wu & Kevin Wei & Angela Zhang & Allison Casasola & Teresa Nguyen & Sith Riantawan & Patricia Shi & Daniel Ho & James Zou, 2025. "An automated framework for assessing how well LLMs cite relevant medical references," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    14. Tingmingke Lu, 2025. "Maximum Hallucination Standards for Domain-Specific Large Language Models," Papers 2503.05481, arXiv.org.
    15. Zheng, Shuwen & Pan, Kai & Liu, Jie & Chen, Yunxia, 2024. "Empirical study on fine-tuning pre-trained large language models for fault diagnosis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Xiangru Tang & Qiao Jin & Kunlun Zhu & Tongxin Yuan & Yichi Zhang & Wangchunshu Zhou & Meng Qu & Yilun Zhao & Jian Tang & Zhuosheng Zhang & Arman Cohan & Dov Greenbaum & Zhiyong Lu & Mark Gerstein, 2025. "Risks of AI scientists: prioritizing safeguarding over autonomy," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. van Kolfschooten, Hannah & van Oirschot, Janneke, 2024. "The EU Artificial Intelligence Act (2024): Implications for healthcare," Health Policy, Elsevier, vol. 149(C).
    18. Zhou, Zhen & Gu, Ziyuan & Qu, Xiaobo & Liu, Pan & Liu, Zhiyuan & Yu, Wenwu, 2024. "Urban mobility foundation model: A literature review and hierarchical perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    19. Jean Ogier du Terrail & Quentin Klopfenstein & Honghao Li & Imke Mayer & Nicolas Loiseau & Mohammad Hallal & Michael Debouver & Thibault Camalon & Thibault Fouqueray & Jorge Arellano Castro & Zahia Ya, 2025. "FedECA: federated external control arms for causal inference with time-to-event data in distributed settings," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    20. Hossam A. Gabber & Omar S. Hemied, 2024. "Domain-Specific Large Language Model for Renewable Energy and Hydrogen Deployment Strategies," Energies, MDPI, vol. 17(23), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62385-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.