IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62363-z.html
   My bibliography  Save this article

The oceanic physical injection pump of organic carbon

Author

Listed:
  • Marco Bellacicco

    (Consiglio Nazionale delle Ricerche)

  • Salvatore Marullo

    (Consiglio Nazionale delle Ricerche)

  • Giorgio Dall’Olmo

    (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS)

  • Daniele Iudicone

    (Stazione Zoologica Anton Dohrn)

  • Bruno Buongiorno Nardelli

    (Consiglio Nazionale delle Ricerche)

Abstract

The contribution of the ocean biological carbon pump to the export of organic carbon at depth has predominantly been assessed by considering sinking particulate matter and vertically migrating organisms. Despite growing recognition of the importance of dynamical pathways that export carbon through upper-ocean mixing and advection, observation-based estimates of their global impact are still lacking. Here, we quantify the values and uncertainties of the export driven by the physical injection pump (PIP) and its interannual variability by leveraging a 4D data-driven time series (1997-2018) of particulate organic carbon concentration (POC) and ocean circulation, as well as 3D fields of climatological dissolved organic carbon (DOC). Vertical diffusion dominates our POC export estimates, but remains the most uncertain process. Assuming maximal diffusivity estimates that are consistent with observations, POC and DOC export amount to 0.37 Pg C yr−1 and 0.48 Pg C yr−1, respectively. The contribution from entrainment and advection is strongly modulated by the POC annual cycle, revealing the critical coupling between biological production and upper-layer mixing in driving the net annual export. Observed interannual signals correlate with a linear combination of El Niño–Southern Oscillation and Southern Annular Mode indices, suggesting that the PIP is connected to intermediate- and mode-water formation dynamics in the Southern Ocean.

Suggested Citation

  • Marco Bellacicco & Salvatore Marullo & Giorgio Dall’Olmo & Daniele Iudicone & Bruno Buongiorno Nardelli, 2025. "The oceanic physical injection pump of organic carbon," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62363-z
    DOI: 10.1038/s41467-025-62363-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62363-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62363-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei-Lei Wang & Weiwei Fu & Frédéric A. C. Le Moigne & Robert T. Letscher & Yi Liu & Jin-Ming Tang & François W. Primeau, 2023. "Biological carbon pump estimate based on multidecadal hydrographic data," Nature, Nature, vol. 624(7992), pages 579-585, December.
    2. Philip W. Boyd & Hervé Claustre & Marina Levy & David A. Siegel & Thomas Weber, 2019. "Multi-faceted particle pumps drive carbon sequestration in the ocean," Nature, Nature, vol. 568(7752), pages 327-335, April.
    3. J. L. Sarmiento & N. Gruber & M. A. Brzezinski & J. P. Dunne, 2004. "High-latitude controls of thermocline nutrients and low latitude biological productivity," Nature, Nature, vol. 427(6969), pages 56-60, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Siddiqui & Tim Rixen & Niko Lahajnar & Anja K. Van der Plas & Deon C. Louw & Tarron Lamont & Keshnee Pillay, 2023. "Regional and global impact of CO2 uptake in the Benguela Upwelling System through preformed nutrients," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jonathan Maitland Lauderdale, 2024. "Ocean iron cycle feedbacks decouple atmospheric CO2 from meridional overturning circulation changes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Greg M. Silsbe & James Fox & Toby K. Westberry & Kimberly H. Halsey, 2025. "Global declines in net primary production in the ocean color era," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    4. Cyrus Karas & Dirk Nürnberg & Fabrice Lambert & Gary Shaffer & Frank Lamy, 2025. "Enhanced deglacial carbon transport by Pacific southern-sourced intermediate and mode water," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Prellezo, Raúl & Corrales, Xavier & Andonegi, Eider & Bald, Carlos & Fernandes-Salvador, Jose A. & Iñarra, Bruno & Irigoien, Xabier & Martin, Adrian & Murillas-Maza, Arantza & Tasdemir, Deniz, 2024. "Economic trade-offs of harvesting the ocean twilight zone: An ecosystem services approach," Ecosystem Services, Elsevier, vol. 67(C).
    6. Zihao Zhao & Chie Amano & Thomas Reinthaler & Federico Baltar & Mónica V. Orellana & Gerhard J. Herndl, 2024. "Metaproteomic analysis decodes trophic interactions of microorganisms in the dark ocean," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Shantong Sun & Andrew F. Thompson & Jimin Yu & Lixin Wu, 2024. "Transient overturning changes cause an upper-ocean nutrient decline in a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Manon Laget & Laetitia Drago & Thelma Panaïotis & Rainer Kiko & Lars Stemmann & Andreas Rogge & Natalia Llopis-Monferrer & Aude Leynaert & Jean-Olivier Irisson & Tristan Biard, 2024. "Global census of the significance of giant mesopelagic protists to the marine carbon and silicon cycles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Léo Lacour & Joan Llort & Nathan Briggs & Peter G. Strutton & Philip W. Boyd, 2023. "Seasonality of downward carbon export in the Pacific Southern Ocean revealed by multi-year robotic observations," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. M. S. Clark & J. I. Hoffman & L. S. Peck & L. Bargelloni & D. Gande & C. Havermans & B. Meyer & T. Patarnello & T. Phillips & K. R. Stoof-Leichsenring & D. L. J. Vendrami & A. Beck & G. Collins & M. W, 2023. "Multi-omics for studying and understanding polar life," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Uria Alcolombri & Alon Nissan & Jonasz Słomka & Sam Charlton & Eleonora Secchi & Isobel Short & Kang Soo Lee & François J. Peaudecerf & Dieter A. Baumgartner & Andreas Sichert & Uwe Sauer & Anupam Sen, 2025. "Biogel scavenging slows the sinking of organic particles to the ocean depths," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Helene A. L. Hollitzer & Lavinia Patara & Jens Terhaar & Andreas Oschlies, 2024. "Competing effects of wind and buoyancy forcing on ocean oxygen trends in recent decades," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Gagan Mandal & Shih-Yu Lee & Jia-Yuh Yu, 2021. "The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    14. Angus Atkinson & Axel G. Rossberg & Ursula Gaedke & Gary Sprules & Ryan F. Heneghan & Stratos Batziakas & Maria Grigoratou & Elaine Fileman & Katrin Schmidt & Constantin Frangoulis, 2024. "Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Yuhao Dai & Jimin Yu & Haojia Ren & Xuan Ji, 2022. "Deglacial Subantarctic CO2 outgassing driven by a weakened solubility pump," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Renke Ji & Chao Wang & Wei Wang & Siyuan Liao & Nengcheng Chen, 2024. "Spatiotemporal evolution of carbon balance based on the enhanced two-step floating catchment area (E2SFCA) method in the Yangtze River Economic Belt, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 8979-9004, April.
    17. E. L. Cavan & N. Mackay & S. L. Hill & A. Atkinson & A. Belcher & A. Visser, 2024. "Antarctic krill sequester similar amounts of carbon to key coastal blue carbon habitats," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Moscoso, Jordyn E. & Bianchi, Daniele & Stewart, Andrew L., 2022. "Controls and characteristics of biomass quantization in size-structured planktonic ecosystem models," Ecological Modelling, Elsevier, vol. 468(C).
    19. Wei-Lei Wang & Mar Fernández-Méndez & Franziska Elmer & Guang Gao & Yangyang Zhao & Yuye Han & Jiandong Li & Fei Chai & Minhan Dai, 2023. "Ocean afforestation is a potentially effective way to remove carbon dioxide," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    20. Michaela E. Larsson & Anna R. Bramucci & Sinead Collins & Gustaaf Hallegraeff & Tim Kahlke & Jean-Baptiste Raina & Justin R. Seymour & Martina A. Doblin, 2022. "Mucospheres produced by a mixotrophic protist impact ocean carbon cycling," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62363-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.