IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62112-2.html
   My bibliography  Save this article

Unconventional low temperature decomposition of a saturated hydrocarbon over atomically-dispersed titanium-aluminum-boron catalyst

Author

Listed:
  • Souvick Biswas

    (University of Hawaii at Manoa)

  • Jack Cokas

    (University of California, Los Angeles)

  • Winston Gee

    (University of California, Los Angeles)

  • Dababrata Paul

    (University of Hawaii at Manoa)

  • Nureshan Dias

    (Lawrence Berkeley National Laboratory)

  • Harry W. T. Morgan

    (University of California, Los Angeles)

  • Matthew T. Finn

    (U.S. Naval Research Laboratory)

  • Bethany M. Hudak

    (U.S. Naval Research Laboratory)

  • Perrin M. Godbold

    (U.S. Naval Research Laboratory)

  • Christopher A. Klug

    (U.S. Naval Research Laboratory)

  • Albert Epshteyn

    (U.S. Naval Research Laboratory)

  • Anastassia N. Alexandrova

    (University of California, Los Angeles)

  • Musahid Ahmed

    (Lawrence Berkeley National Laboratory)

  • Ralf I. Kaiser

    (University of Hawaii at Manoa)

Abstract

Sonochemically-synthesized atomically-dispersed titanium-aluminum-boron nanopowder (TiAlB NP) exhibits a remarkable low-temperature catalytic activation of aliphatic C-H bonds at 750 K followed by C-C bond activation thus emerging as a potent low-cost alternative to expensive platinum group metals. Here, the model saturated hydrocarbon, exo-tetrahydrodicyclopentadiene (C10H16), undergoes catalytic decomposition on TiAlB NPs in a chemical microreactor to produce 1,3-cyclopentadiene (c-C5H6), cyclopentene (c-C5H8), and molecular hydrogen (H2) as detected in situ via isomer-selective, single-photon ionization time-of-flight mass spectrometry. Extensive electronic structure theory calculations on model clusters of the catalyst decode a unique synergy among the atomic constituents of the catalyst and chemical bonding in this stepwise, retro Diels Alder reaction: Ti, although insensitive to C-H activation in its metallic state, initiates the catalysis via chemisorption of the hydrocarbon, adjacent B centers readily abstract hydrogen atoms and store them during the catalytic cycle, while Al stabilizes the catalyst structure yet providing space for critical docking sites for the departing hydrocarbons.

Suggested Citation

  • Souvick Biswas & Jack Cokas & Winston Gee & Dababrata Paul & Nureshan Dias & Harry W. T. Morgan & Matthew T. Finn & Bethany M. Hudak & Perrin M. Godbold & Christopher A. Klug & Albert Epshteyn & Anast, 2025. "Unconventional low temperature decomposition of a saturated hydrocarbon over atomically-dispersed titanium-aluminum-boron catalyst," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62112-2
    DOI: 10.1038/s41467-025-62112-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62112-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62112-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuki Nakaya & Jun Hirayama & Seiji Yamazoe & Ken-ichi Shimizu & Shinya Furukawa, 2020. "Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Niancai Cheng & Samantha Stambula & Da Wang & Mohammad Norouzi Banis & Jian Liu & Adam Riese & Biwei Xiao & Ruying Li & Tsun-Kong Sham & Li-Min Liu & Gianluigi A. Botton & Xueliang Sun, 2016. "Platinum single-atom and cluster catalysis of the hydrogen evolution reaction," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    3. Guodong Sun & Zhi-Jian Zhao & Rentao Mu & Shenjun Zha & Lulu Li & Sai Chen & Ketao Zang & Jun Luo & Zhenglong Li & Stephen C. Purdy & A. Jeremy Kropf & Jeffrey T. Miller & Liang Zeng & Jinlong Gong, 2018. "Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    4. Jay A. Labinger & John E. Bercaw, 2002. "Understanding and exploiting C–H bond activation," Nature, Nature, vol. 417(6888), pages 507-514, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Yuan & Erwei Huang & Sooyeon Hwang & Ping Liu & Jingguang G. Chen, 2024. "Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Tian-Wei Song & Cong Xu & Zhu-Tao Sheng & Hui-Kun Yan & Lei Tong & Jun Liu & Wei-Jie Zeng & Lu-Jie Zuo & Peng Yin & Ming Zuo & Sheng-Qi Chu & Ping Chen & Hai-Wei Liang, 2022. "Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Rachela G. Milazzo & Stefania M. S. Privitera & Silvia Scalese & Salvatore A. Lombardo, 2019. "Effect of Morphology and Mechanical Stability of Nanometric Platinum Layer on Nickel Foam for Hydrogen Evolution Reaction," Energies, MDPI, vol. 12(16), pages 1-11, August.
    4. Changhai Lu & Daotong You & Juan Li & Long Wen & Baojun Li & Tuan Guo & Zaizhu Lou, 2022. "Full-spectrum nonmetallic plasmonic carriers for efficient isopropanol dehydration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Pingping Wei & Sai Chen & Ran Luo & Guodong Sun & Kexin Wu & Donglong Fu & Zhi-Jian Zhao & Chunlei Pei & Ning Yan & Jinlong Gong, 2024. "Stable and homogeneous intermetallic alloys by atomic gas-migration for propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Wei Liu & Haisong Feng & Yusen Yang & Yiming Niu & Lei Wang & Pan Yin & Song Hong & Bingsen Zhang & Xin Zhang & Min Wei, 2022. "Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Zhi Wen Chen & Jian Li & Pengfei Ou & Jianan Erick Huang & Zi Wen & LiXin Chen & Xue Yao & GuangMing Cai & Chun Cheng Yang & Chandra Veer Singh & Qing Jiang, 2024. "Unusual Sabatier principle on high entropy alloy catalysts for hydrogen evolution reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Liangjun Chen & Guinan Chen & Chengtao Gong & Yifei Zhang & Zhihao Xing & Jiahao Li & Guodong Xu & Gao Li & Yongwu Peng, 2024. "Low-valence platinum single atoms in sulfur-containing covalent organic frameworks for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Qian-Yu Li & Shiyan Cheng & Ziqi Ye & Tao Huang & Fuxing Yang & Yu-Mei Lin & Lei Gong, 2023. "Visible light-triggered selective C(sp2)-H/C(sp3)-H coupling of benzenes with aliphatic hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Sheng Xu & Yuanyuan Ping & Yinyan Su & Haoyun Guo & Aowei Luo & Wangqing Kong, 2025. "A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    13. Zhibo Liu & Fei Huang & Mi Peng & Yunlei Chen & Xiangbin Cai & Linlin Wang & Zenan Hu & Xiaodong Wen & Ning Wang & Dequan Xiao & Hong Jiang & Hongbin Sun & Hongyang Liu & Ding Ma, 2021. "Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Gonglei Shao & Changfei Jing & Zhinan Ma & Yuanyuan Li & Weiqi Dang & Dong Guo & Manman Wu & Song Liu & Xu Zhang & Kun He & Yifei Yuan & Jun Luo & Sheng Dai & Jie Xu & Zhen Zhou, 2024. "Dynamic coordination engineering of 2D PhenPtCl2 nanosheets for superior hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Yilin Deng & Wei Lai & Bin Xu, 2020. "A Mini Review on Doped Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction," Energies, MDPI, vol. 13(18), pages 1-17, September.
    16. Xie, Xuanlan & Li, Chang & Lu, Zhiheng & Wang, Yishuang & Yang, Wenqiang & Chen, Mingqiang & Li, Wenzhi, 2024. "Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol," Energy, Elsevier, vol. 300(C).
    17. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Liu-Chun Wang & Li-Chan Chang & Wen-Qi Chen & Yi-Hsin Chien & Po-Ya Chang & Chih-Wen Pao & Yin-Fen Liu & Hwo-Shuenn Sheu & Wen-Pin Su & Chen-Hao Yeh & Chen-Sheng Yeh, 2022. "Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62112-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.