Author
Listed:
- Lei Hua
(University of Cambridge)
- Na Wang
(University of Cambridge)
- Susan Stanley
(University of Cambridge)
- Ruth M. Donald
(University of Cambridge)
- Satish Kumar Eeda
(University of Cambridge)
- Kumari Billakurthi
(University of Cambridge)
- Ana Rita Borba
(University of Cambridge)
- Julian M. Hibberd
(University of Cambridge)
Abstract
C4 photosynthesis has evolved in over sixty plant lineages and improves photosynthetic efficiency by ~50%. One unifying character of C4 plants is photosynthetic activation of a compartment such as the bundle sheath, but gene regulatory networks controlling this cell type are poorly understood. In Arabidopsis, a bipartite MYC-MYB transcription factor module restricts gene expression to these cells, but in grasses the regulatory logic allowing bundle sheath gene expression has not been defined. Using the global staple and C3 crop rice, we find that the SULFITE REDUCTASE promoter is sufficient for strong bundle sheath expression. This promoter encodes an intricate cis-regulatory logic with multiple activators and repressors acting combinatorially. Within this landscape we identify a distal cis-regulatory module (CRM) activated by an ensemble of transcription factors from the WRKY, G2-like, MYB-related, DOF, IDD and bZIP families. This module is necessary and sufficient to pattern gene expression to the rice bundle sheath. Oligomerisation of the CRM and fusion to core promoters containing Y-patches allow activity to be increased 220-fold. This CRM generates bundle sheath-specific expression in Arabidopsis indicating deep conservation in function between monocotyledons and dicotyledons. In summary, we identify an ancient, short, and tuneable CRM patterning expression to the bundle sheath that we anticipate will be useful for engineering this cell type in various crop species.
Suggested Citation
Lei Hua & Na Wang & Susan Stanley & Ruth M. Donald & Satish Kumar Eeda & Kumari Billakurthi & Ana Rita Borba & Julian M. Hibberd, 2025.
"A transcription factor ensemble orchestrates bundle sheath expression in rice,"
Nature Communications, Nature, vol. 16(1), pages 1-17, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62087-0
DOI: 10.1038/s41467-025-62087-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62087-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.