IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61907-7.html
   My bibliography  Save this article

Deep learning-based high-resolution time inference for deciphering dynamic gene regulation from fixed embryos

Author

Listed:
  • Huihan Bao

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Shihe Zhang

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Zhiyang Yu

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Heng Xu

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

Embryo development is driven by the spatiotemporal dynamics of complex gene regulatory networks. Uncovering these dynamics requires simultaneous tracking of multiple fluctuating molecular species over time, which exceeds the capabilities of traditional live-imaging approaches. Fixed-embryo imaging offers the necessary sensitivity and capacity but lacks temporal resolution. Here, we present a multi-scale ensemble deep learning approach to precisely infer absolute developmental time with 1-minute resolution from nuclear morphology in fixed Drosophila embryo images. Applying this approach to quantitative imaging of fixed wild-type embryos, we resolve the spatiotemporal regulation of the endogenous segmentation gene Krüppel (Kr) by multiple transcription factors (TFs) during early development without genetic modification. Integrating a time-resolved theoretical model of single-molecule mRNA statistics, we further uncover the unsteady-state bursty kinetics of the endogenous segmentation gene, hunchback (hb), driven by dynamic TF binding. Our method provides a versatile framework for deciphering complex gene network dynamics in genetically unmodified organisms.

Suggested Citation

  • Huihan Bao & Shihe Zhang & Zhiyang Yu & Heng Xu, 2025. "Deep learning-based high-resolution time inference for deciphering dynamic gene regulation from fixed embryos," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61907-7
    DOI: 10.1038/s41467-025-61907-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61907-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61907-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johannes Jaeger & Svetlana Surkova & Maxim Blagov & Hilde Janssens & David Kosman & Konstantin N. Kozlov & Manu & Ekaterina Myasnikova & Carlos E. Vanario-Alonso & Maria Samsonova & David H. Sharp & J, 2004. "Dynamic control of positional information in the early Drosophila embryo," Nature, Nature, vol. 430(6997), pages 368-371, July.
    2. Eran Segal & Tali Raveh-Sadka & Mark Schroeder & Ulrich Unnerstall & Ulrike Gaul, 2008. "Predicting expression patterns from regulatory sequence in Drosophila segmentation," Nature, Nature, vol. 451(7178), pages 535-540, January.
    3. Honggang Wu & Manu & Renjie Jiao & Jun Ma, 2015. "Temporal and spatial dynamics of scaling-specific features of a gene regulatory network in Drosophila," Nature Communications, Nature, vol. 6(1), pages 1-13, December.
    4. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    5. Philipp Eulenberg & Niklas Köhler & Thomas Blasi & Andrew Filby & Anne E. Carpenter & Paul Rees & Fabian J. Theis & F. Alexander Wolf, 2017. "Reconstructing cell cycle and disease progression using deep learning," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Kolja Becker & Eva Balsa-Canto & Damjan Cicin-Sain & Astrid Hoermann & Hilde Janssens & Julio R Banga & Johannes Jaeger, 2013. "Reverse-Engineering Post-Transcriptional Regulation of Gap Genes in Drosophila melanogaster," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-16, October.
    3. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    4. Ronald Thenius & Michael Bodi & Thomas Schmickl & Karl Crailsheim, 2013. "Novel method of virtual embryogenesis for structuring Artificial Neural Network controllers," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(4), pages 375-387.
    5. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    6. Muir Morrison & Manuel Razo-Mejia & Rob Phillips, 2021. "Reconciling kinetic and thermodynamic models of bacterial transcription," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-30, January.
    7. repec:plo:pcbi00:1000506 is not listed on IDEAS
    8. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    9. Sammy Villa & Qumber Jafri & Julia R. Lazzari-Dean & Manjot Sangha & Niclas Olsson & Austin E. Y. T. Lefebvre & Mark E. Fitzgerald & Katrina Jackson & Zhenghao Chen & Brian Y. Feng & Aaron H. Nile & D, 2025. "BiDAC-dependent degradation of plasma membrane proteins by the endolysosomal system," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    10. Rajesh Ramaswamy & Ivo F Sbalzarini & Nélido González-Segredo, 2011. "Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    11. Anton J M Larsson & Christoph Ziegenhain & Michael Hagemann-Jensen & Björn Reinius & Tina Jacob & Tim Dalessandri & Gert-Jan Hendriks & Maria Kasper & Rickard Sandberg, 2021. "Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-16, March.
    12. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. repec:plo:pone00:0014624 is not listed on IDEAS
    14. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    15. Stradner, Jürgen & Thenius, Ronald & Zahadat, Payam & Hamann, Heiko & Crailsheim, Karl & Schmickl, Thomas, 2013. "Algorithmic requirements for swarm intelligence in differently coupled collective systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 100-114.
    16. repec:plo:pone00:0143867 is not listed on IDEAS
    17. repec:plo:pbio00:1000115 is not listed on IDEAS
    18. Manuel Cambón & Óscar Sánchez, 2022. "Thermodynamic Modelling of Transcriptional Control: A Sensitivity Analysis," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
    19. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    20. Jonathan Liu & Donald Hansen & Elizabeth Eck & Yang Joon Kim & Meghan Turner & Simon Alamos & Hernan G Garcia, 2021. "Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-26, May.
    21. David M Holloway & Alexander V Spirov, 2017. "Transcriptional bursting in Drosophila development: Stochastic dynamics of eve stripe 2 expression," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
    22. Pranidhi Sood & Robert J Johnston Jr. & Edo Kussell, 2012. "Stochastic De-repression of Rhodopsins in Single Photoreceptors of the Fly Retina," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-13, February.
    23. Debasish Mondal & Edward Dougherty & Abhishek Mukhopadhyay & Adria Carbo & Guang Yao & Jianhua Xing, 2014. "Systematic Reverse Engineering of Network Topologies: A Case Study of Resettable Bistable Cellular Responses," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    24. repec:plo:pone00:0008432 is not listed on IDEAS
    25. William C. W. Chen & Leonid Gaidukov & Yong Lai & Ming-Ru Wu & Jicong Cao & Michael J. Gutbrod & Gigi C. G. Choi & Rachel P. Utomo & Ying-Chou Chen & Liliana Wroblewska & Manolis Kellis & Lin Zhang & , 2022. "A synthetic transcription platform for programmable gene expression in mammalian cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61907-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.