IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61511-9.html
   My bibliography  Save this article

Hot-carrier trapping preserves high quantum yields but limits optical gain in InP-based quantum dots

Author

Listed:
  • Sander J. W. Vonk

    (Utrecht University
    Institute for Sustainable and Circular Chemistry)

  • P. Tim Prins

    (Institute for Sustainable and Circular Chemistry)

  • Tong Wang

    (Imperial College London)

  • Jan Matthys

    (Ghent University
    Ghent University)

  • Luca Giordano

    (Ghent University)

  • Pieter Schiettecatte

    (Ghent University)

  • Navendu Mondal

    (Imperial College London)

  • Jaco J. Geuchies

    (Leiden University
    Delft University of Technology)

  • Arjan J. Houtepen

    (Delft University of Technology)

  • Jessi E. S. Hoeven

    (Debye Institute for Nanomaterials Science)

  • Thomas R. Hopper

    (Imperial College London
    University of Central Florida)

  • Zeger Hens

    (Ghent University
    Ghent University)

  • Pieter Geiregat

    (Ghent University
    Ghent University)

  • Artem A. Bakulin

    (Imperial College London)

  • Freddy T. Rabouw

    (Utrecht University
    Institute for Sustainable and Circular Chemistry)

Abstract

Indium phosphide is the leading material for commercial applications of colloidal quantum dots. To date, however, the community has failed to achieve successful operation under strong excitation conditions, contrasting sharply with other materials. Here, we report unusual photophysics of state-of-the-art InP-based quantum dots, which makes them unattractive as a laser gain material despite a near-unity quantum yield. A combination of ensemble-based time-resolved spectroscopy over timescales from femtoseconds to microseconds and single-quantum-dot spectroscopy reveals ultrafast trapping of hot charge carriers. This process reduces the achievable population inversion and limits light amplification for lasing applications. However, it does not quench fluorescence. Instead, trapped carriers can recombine radiatively, leading to delayed—but bright—fluorescence. Single-quantum-dot experiments confirm the direct link between hot-carrier trapping and delayed fluorescence. Hot-carrier trapping thus explains why the latest generation of InP-based quantum dots struggle to support optical gain, although the quantum yield is near unity for low-intensity applications. Comparison with other popular quantum-dot materials—CdSe, Pb–halide perovskites, and CuInS2—indicate that the hot-carrier dynamics observed are unique to InP.

Suggested Citation

  • Sander J. W. Vonk & P. Tim Prins & Tong Wang & Jan Matthys & Luca Giordano & Pieter Schiettecatte & Navendu Mondal & Jaco J. Geuchies & Arjan J. Houtepen & Jessi E. S. Hoeven & Thomas R. Hopper & Zege, 2025. "Hot-carrier trapping preserves high quantum yields but limits optical gain in InP-based quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61511-9
    DOI: 10.1038/s41467-025-61511-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61511-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61511-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fengjia Fan & Oleksandr Voznyy & Randy P. Sabatini & Kristopher T. Bicanic & Michael M. Adachi & James R. McBride & Kemar R. Reid & Young-Shin Park & Xiyan Li & Ankit Jain & Rafael Quintero-Bermudez &, 2017. "Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy," Nature, Nature, vol. 544(7648), pages 75-79, April.
    2. Qian Zhao & Abhijit Hazarika & Xihan Chen & Steve P. Harvey & Bryon W. Larson & Glenn R. Teeter & Jun Liu & Tao Song & Chuanxiao Xiao & Liam Shaw & Minghui Zhang & Guoran Li & Matthew C. Beard & Josep, 2019. "High efficiency perovskite quantum dot solar cells with charge separating heterostructure," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Deniz Bozyigit & Nuri Yazdani & Maksym Yarema & Olesya Yarema & Weyde Matteo Mario Lin & Sebastian Volk & Kantawong Vuttivorakulchai & Mathieu Luisier & Fanni Juranyi & Vanessa Wood, 2016. "Soft surfaces of nanomaterials enable strong phonon interactions," Nature, Nature, vol. 531(7596), pages 618-622, March.
    4. Namyoung Ahn & Clément Livache & Valerio Pinchetti & Heeyoung Jung & Ho Jin & Donghyo Hahm & Young-Shin Park & Victor I. Klimov, 2023. "Electrically driven amplified spontaneous emission from colloidal quantum dots," Nature, Nature, vol. 617(7959), pages 79-85, May.
    5. Christophe Galland & Yagnaseni Ghosh & Andrea Steinbrück & Milan Sykora & Jennifer A. Hollingsworth & Victor I. Klimov & Han Htoon, 2011. "Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots," Nature, Nature, vol. 479(7372), pages 203-207, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Rainò & Nuri Yazdani & Simon C. Boehme & Manuel Kober-Czerny & Chenglian Zhu & Franziska Krieg & Marta D. Rossell & Rolf Erni & Vanessa Wood & Ivan Infante & Maksym V. Kovalenko, 2022. "Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Dongju Jung & Jeong Woo Park & Sejong Min & Hak June Lee & Jin Su Park & Gui-Min Kim & Doyoon Shin & Seongbin Im & Jaemin Lim & Ka Hyung Kim & Jong Ah Chae & Doh C. Lee & Raphaël Pugin & Xavier Bullia, 2024. "Strain-graded quantum dots with spectrally pure, stable and polarized emission," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Daria D. Blach & Victoria A. Lumsargis-Roth & Chern Chuang & Daniel E. Clark & Shibin Deng & Olivia F. Williams & Christina W. Li & Jianshu Cao & Libai Huang, 2025. "Environment-assisted quantum transport of excitons in perovskite nanocrystal superlattices," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Junhong Yu & Hilmi Volkan Demir & Manoj Sharma, 2025. "Optical signatures of lattice strain in chemically doped colloidal quantum wells," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    6. Ruixiang Chen & Ningning Liang & Tianrui Zhai, 2024. "Dual-color emissive OLED with orthogonal polarization modes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Heeyoung Jung & Young-Shin Park & Namyoung Ahn & Jaehoon Lim & Igor Fedin & Clément Livache & Victor I. Klimov, 2022. "Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yizhen Zheng & Xing Lin & Jiongzhao Li & Jianan Chen & Wenhao Wu & Zixuan Song & Yuan Gao & Zhuang Hu & Huifeng Wang & Zikang Ye & Haiyan Qin & Xiaogang Peng, 2025. "In situ n-doped nanocrystalline electron-injection-layer for general-lighting quantum-dot LEDs," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Amanda A. Volk & Robert W. Epps & Daniel T. Yonemoto & Benjamin S. Masters & Felix N. Castellano & Kristofer G. Reyes & Milad Abolhasani, 2023. "AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Hayeon Baek & Sungsu Kang & Junyoung Heo & Soonmi Choi & Ran Kim & Kihyun Kim & Nari Ahn & Yeo-Geon Yoon & Taekjoon Lee & Jae Bok Chang & Kyung Sig Lee & Young-Gil Park & Jungwon Park, 2024. "Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Xingzhi Wang & Yan Gao & Xiaonan Liu & Huaiyu Xu & Ruixiang Liu & Jiaojiao Song & Bo Li & Huaibin Shen & Fengjia Fan, 2024. "Strong high-energy exciton electroluminescence from the light holes of polytypic quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61511-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.