IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31189-4.html
   My bibliography  Save this article

Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2

Author

Listed:
  • Heeyoung Jung

    (Los Alamos National Laboratory)

  • Young-Shin Park

    (Los Alamos National Laboratory
    University of New Mexico)

  • Namyoung Ahn

    (Los Alamos National Laboratory)

  • Jaehoon Lim

    (Los Alamos National Laboratory
    Sungkyunkwan University, Natural Sciences Campus)

  • Igor Fedin

    (Los Alamos National Laboratory)

  • Clément Livache

    (Los Alamos National Laboratory)

  • Victor I. Klimov

    (Los Alamos National Laboratory)

Abstract

Colloidal quantum dots (QDs) are attractive materials for the realization of solution-processable laser diodes. Primary challenges towards this objective are fast optical-gain relaxation due to nonradiative Auger recombination and poor stability of colloidal QD solids under high current densities required to obtain optical gain. Here we resolve these challenges and achieve broad-band optical gain spanning the band-edge (1S) and the higher-energy (1P) transitions. This demonstration is enabled by continuously graded QDs with strongly suppressed Auger recombination and a current-focusing device design, combined with short-pulse pumping. Using this approach, we achieve ultra-high current densities (~1000 A cm−2) and brightness (~10 million cd m−2), and demonstrate an unusual two-band electroluminescence regime for which the 1P band is more intense than the 1S feature. This implies the realization of extremely large QD occupancies of up to ~8 excitons per-dot, which corresponds to complete filling of the 1S and 1P electron shells.

Suggested Citation

  • Heeyoung Jung & Young-Shin Park & Namyoung Ahn & Jaehoon Lim & Igor Fedin & Clément Livache & Victor I. Klimov, 2022. "Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31189-4
    DOI: 10.1038/s41467-022-31189-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31189-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31189-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor I. Klimov & Sergei A. Ivanov & Jagjit Nanda & Marc Achermann & Ilya Bezel & John A. McGuire & Andrei Piryatinski, 2007. "Single-exciton optical gain in semiconductor nanocrystals," Nature, Nature, vol. 447(7143), pages 441-446, May.
    2. Fengjia Fan & Oleksandr Voznyy & Randy P. Sabatini & Kristopher T. Bicanic & Michael M. Adachi & James R. McBride & Kemar R. Reid & Young-Shin Park & Xiyan Li & Ankit Jain & Rafael Quintero-Bermudez &, 2017. "Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy," Nature, Nature, vol. 544(7648), pages 75-79, April.
    3. Jeongkyun Roh & Young-Shin Park & Jaehoon Lim & Victor I. Klimov, 2020. "Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Rainò & Nuri Yazdani & Simon C. Boehme & Manuel Kober-Czerny & Chenglian Zhu & Franziska Krieg & Marta D. Rossell & Rolf Erni & Vanessa Wood & Ivan Infante & Maksym V. Kovalenko, 2022. "Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yeongho Choi & Donghyo Hahm & Wan Ki Bae & Jaehoon Lim, 2023. "Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Philippe Tamarat & Elise Prin & Yuliia Berezovska & Anastasiia Moskalenko & Thi Phuc Tan Nguyen & Chenghui Xia & Lei Hou & Jean-Baptiste Trebbia & Marios Zacharias & Laurent Pedesseau & Claudine Katan, 2023. "Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Yuxuan Li & Yaoyao Han & Wenfei Liang & Boyu Zhang & Yulu Li & Yuan Liu & Yupeng Yang & Kaifeng Wu & Jingyi Zhu, 2022. "Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Hanlin Fang & Qiaoling Lin & Yi Zhang & Joshua Thompson & Sanshui Xiao & Zhipei Sun & Ermin Malic & Saroj P. Dash & Witlef Wieczorek, 2023. "Localization and interaction of interlayer excitons in MoSe2/WSe2 heterobilayers," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31189-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.