IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61399-5.html
   My bibliography  Save this article

Self-supervised predictive learning accounts for cortical layer-specificity

Author

Listed:
  • Kevin Kermani Nejad

    (University of Oxford
    University of Bristol)

  • Paul Anastasiades

    (University of Bristol)

  • Loreen Hertäg

    (Technische Universität Berlin & Bernstein Center for Computational Neuroscience Berlin)

  • Rui Ponte Costa

    (University of Oxford
    University of Bristol)

Abstract

The neocortex constructs an internal representation of the world, but the underlying circuitry and computational principles remain unclear. Inspired by self-supervised learning algorithms, we propose a computational theory in which layer 2/3 (L2/3) integrates past sensory input, relayed via layer 4, with top-down context to predict incoming sensory stimuli. Learning is self-supervised by comparing L2/3 predictions with the latent representations of actual sensory input arriving at L5. We demonstrate that our model accurately predicts sensory information in context-dependent temporal tasks, and that its predictions are robust to noisy and occluded sensory input. Additionally, our model generates layer-specific sparsity, consistent with experimental observations. Next, using a sensorimotor task, we show that the model’s L2/3 and L5 prediction errors mirror mismatch responses observed in awake, behaving mice. Finally, through manipulations, we offer testable predictions to unveil the computational roles of various cortical features. In summary, our findings suggest that the multi-layered neocortex empowers the brain with self-supervised predictive learning.

Suggested Citation

  • Kevin Kermani Nejad & Paul Anastasiades & Loreen Hertäg & Rui Ponte Costa, 2025. "Self-supervised predictive learning accounts for cortical layer-specificity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61399-5
    DOI: 10.1038/s41467-025-61399-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61399-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61399-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julie A. Harris & Stefan Mihalas & Karla E. Hirokawa & Jennifer D. Whitesell & Hannah Choi & Amy Bernard & Phillip Bohn & Shiella Caldejon & Linzy Casal & Andrew Cho & Aaron Feiner & David Feng & Nath, 2019. "Hierarchical organization of cortical and thalamic connectivity," Nature, Nature, vol. 575(7781), pages 195-202, November.
    2. Talia Konkle & George A. Alvarez, 2022. "A self-supervised domain-general learning framework for human ventral stream representation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yumiko Yoshimura & Jami L. M. Dantzker & Edward M. Callaway, 2005. "Excitatory cortical neurons form fine-scale functional networks," Nature, Nature, vol. 433(7028), pages 868-873, February.
    4. Jim Berg & Staci A. Sorensen & Jonathan T. Ting & Jeremy A. Miller & Thomas Chartrand & Anatoly Buchin & Trygve E. Bakken & Agata Budzillo & Nick Dee & Song-Lin Ding & Nathan W. Gouwens & Rebecca D. H, 2021. "Human neocortical expansion involves glutamatergic neuron diversification," Nature, Nature, vol. 598(7879), pages 151-158, October.
    5. Timothy P. Lillicrap & Daniel Cownden & Douglas B. Tweed & Colin J. Akerman, 2016. "Random synaptic feedback weights support error backpropagation for deep learning," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    6. Rebecca J. Rabinovich & Daniel D. Kato & Randy M. Bruno, 2022. "Learning enhances encoding of time and temporal surprise in mouse primary sensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. N. Alex Cayco-Gajic & Claudia Clopath & R. Angus Silver, 2017. "Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    8. Leopoldo Petreanu & Tianyi Mao & Scott M. Sternson & Karel Svoboda, 2009. "The subcellular organization of neocortical excitatory connections," Nature, Nature, vol. 457(7233), pages 1142-1145, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Yanjie Wang & Zhaonan Chen & Guofen Ma & Lizhao Wang & Yanmei Liu & Meiling Qin & Xiang Fei & Yifan Wu & Min Xu & Siyu Zhang, 2023. "A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    4. Lina Marcela Carmona & Anders Nelson & Lin T. Tun & An Kim & Rani Shiao & Michael D. Kissner & Vilas Menon & Rui M. Costa, 2025. "Corticothalamic neurons in motor cortex have a permissive role in motor execution," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    5. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    6. Hironobu Osaki & Moeko Kanaya & Yoshifumi Ueta & Mariko Miyata, 2022. "Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yufeng Liu & Shengdian Jiang & Yingxin Li & Sujun Zhao & Zhixi Yun & Zuo-Han Zhao & Lingli Zhang & Gaoyu Wang & Xin Chen & Linus Manubens-Gil & Yuning Hang & Qiaobo Gong & Yuanyuan Li & Penghao Qian &, 2024. "Neuronal diversity and stereotypy at multiple scales through whole brain morphometry," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Xinhong Chen & Damien A. Wolfe & Dhanesh Sivadasan Bindu & Mengying Zhang & Naz Taskin & David Goertsen & Timothy F. Shay & Erin E. Sullivan & Sheng-Fu Huang & Sripriya Ravindra Kumar & Cynthia M. Aro, 2023. "Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Gabriele Marcassa & Dan Dascenco & Blanca Lorente-Echeverría & Danie Daaboul & Jeroen Vandensteen & Elke Leysen & Lucas Baltussen & Andrew J. M. Howden & Joris Wit, 2025. "Synaptic signatures and disease vulnerabilities of layer 5 pyramidal neurons," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    11. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Salim Megat & Christine Marques & Marina Hernán-Godoy & Chantal Sellier & Geoffrey Stuart-Lopez & Sylvie Dirrig-Grosch & Charlotte Gorin & Aurore Brunet & Mathieu Fischer & Céline Keime & Pascal Kessl, 2025. "CREB3 gain of function variants protect against ALS," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    14. Federico Brandalise & Ronan Chéreau & I-Wen Chen & David Oorschot & Claudia Raig & Tanika Bawa & Nandkishor Mule & Stéphane Pagès & Foivos Markopoulos & Anthony Holtmaat, 2025. "Thalamocortical feedback selectively controls pyramidal neuron excitability," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    15. Max A. Wilson & Anna Sumera & Lewis W. Taylor & Soraya Meftah & Robert I. McGeachan & Tamara Modebadze & B. Ashan P. Jayasekera & Christopher J. A. Cowie & Fiona E. N. LeBeau & Imran Liaquat & Claire , 2025. "Phylogenetic divergence of GABAB receptor signaling in neocortical networks over adult life," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    16. Shailaja Akella & Peter Ledochowitsch & Joshua H. Siegle & Hannah Belski & Daniel D. Denman & Michael A. Buice & Severine Durand & Christof Koch & Shawn R. Olsen & Xiaoxuan Jia, 2025. "Deciphering neuronal variability across states reveals dynamic sensory encoding," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    17. Sergio Luengo-Sanchez & Isabel Fernaud-Espinosa & Concha Bielza & Ruth Benavides-Piccione & Pedro Larrañaga & Javier DeFelipe, 2018. "3D morphology-based clustering and simulation of human pyramidal cell dendritic spines," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-22, June.
    18. Xing, Miaomiao & Song, Xinlin & Wang, Hengtong & Yang, Zhuoqin & Chen, Yong, 2022. "Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    20. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61399-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.