IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61209-y.html
   My bibliography  Save this article

A generalized platform for artificial intelligence-powered autonomous enzyme engineering

Author

Listed:
  • Nilmani Singh

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Stephan Lane

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Tianhao Yu

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Jingxia Lu

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Adrianna Ramos

    (University of Illinois Urbana-Champaign)

  • Haiyang Cui

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

  • Huimin Zhao

    (University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign
    University of Illinois Urbana-Champaign)

Abstract

Proteins are the molecular machines of life with numerous applications in energy, health, and sustainability. However, engineering proteins with desired functions for practical applications remains slow, expensive, and specialist-dependent. Here we report a generally applicable platform for autonomous enzyme engineering that integrates machine learning and large language models with biofoundry automation to eliminate the need for human intervention, judgement, and domain expertise. Requiring only an input protein sequence and a quantifiable way to measure fitness, this automated platform can be applied to engineer a wide array of proteins. As a proof of concept, we engineer Arabidopsis thaliana halide methyltransferase (AtHMT) for a 90-fold improvement in substrate preference and 16-fold improvement in ethyltransferase activity, along with developing a Yersinia mollaretii phytase (YmPhytase) variant with 26-fold improvement in activity at neutral pH. This is accomplished in four rounds over 4 weeks, while requiring construction and characterization of fewer than 500 variants for each enzyme. This platform for autonomous experimentation paves the way for rapid advancements across diverse industries, from medicine and biotechnology to renewable energy and sustainable chemistry.

Suggested Citation

  • Nilmani Singh & Stephan Lane & Tianhao Yu & Jingxia Lu & Adrianna Ramos & Haiyang Cui & Huimin Zhao, 2025. "A generalized platform for artificial intelligence-powered autonomous enzyme engineering," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61209-y
    DOI: 10.1038/s41467-025-61209-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61209-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61209-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Behnam Enghiad & Pu Xue & Nilmani Singh & Aashutosh Girish Boob & Chengyou Shi & Vassily Andrew Petrov & Roy Liu & Siddhartha Suryanarayana Peri & Stephan Thomas Lane & Emily Danielle Gaither & Huimin, 2022. "PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 636(8042), pages 4-4, December.
    3. Daniil A. Boiko & Robert MacKnight & Ben Kline & Gabe Gomes, 2023. "Autonomous chemical research with large language models," Nature, Nature, vol. 624(7992), pages 570-578, December.
    4. Tong Si & Ran Chao & Yuhao Min & Yuying Wu & Wen Ren & Huimin Zhao, 2017. "Automated multiplex genome-scale engineering in yeast," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    5. Nathan J. Szymanski & Bernardus Rendy & Yuxing Fei & Rishi E. Kumar & Tanjin He & David Milsted & Matthew J. McDermott & Max Gallant & Ekin Dogus Cubuk & Amil Merchant & Haegyeom Kim & Anubhav Jain & , 2023. "An autonomous laboratory for the accelerated synthesis of novel materials," Nature, Nature, vol. 624(7990), pages 86-91, December.
    6. Michael Segal, 2019. "An operating system for the biology lab," Nature, Nature, vol. 573(7775), pages 112-113, September.
    7. Tianwei Dai & Sriram Vijayakrishnan & Filip T. Szczypiński & Jean-François Ayme & Ehsan Simaei & Thomas Fellowes & Rob Clowes & Lyubomir Kotopanov & Caitlin E. Shields & Zhengxue Zhou & John W. Ward &, 2024. "Autonomous mobile robots for exploratory synthetic chemistry," Nature, Nature, vol. 635(8040), pages 890-897, November.
    8. Richard S. Ayikpoe & Chengyou Shi & Alexander J. Battiste & Sara M. Eslami & Sangeetha Ramesh & Max A. Simon & Ian R. Bothwell & Hyunji Lee & Andrew J. Rice & Hengqian Ren & Qiqi Tian & Lonnie A. Harr, 2022. "A scalable platform to discover antimicrobials of ribosomal origin," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    10. Tijana Radivojević & Zak Costello & Kenneth Workman & Hector Garcia Martin, 2020. "A machine learning Automated Recommendation Tool for synthetic biology," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    11. Benjamin Burger & Phillip M. Maffettone & Vladimir V. Gusev & Catherine M. Aitchison & Yang Bai & Xiaoyan Wang & Xiaobo Li & Ben M. Alston & Buyi Li & Rob Clowes & Nicola Rankin & Brandon Harris & Rei, 2020. "A mobile robotic chemist," Nature, Nature, vol. 583(7815), pages 237-241, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pantelis Livanos & Choy Kriechbaum & Sophia Remers & Arvid Herrmann & Sabine Müller, 2025. "Kinesin-12 POK2 polarization is a prerequisite for a fully functional division site and aids cell plate positioning," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Justin Riper & Arleth O. Martinez-Claros & Lie Wang & Hannah E. Schneiderman & Sweta Maheshwari & Monica C. Pillon, 2025. "CryoEM structure of the SLFN14 endoribonuclease reveals insight into RNA binding and cleavage," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Xin Yong & Guowen Jia & Qin Yang & Chunzhuang Zhou & Sitao Zhang & Huaqing Deng & Daniel D. Billadeau & Zhaoming Su & Da Jia, 2025. "Cryo-EM structure of the BLOC-3 complex provides insights into the pathogenesis of Hermansky-Pudlak syndrome," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Sisira Mambram Kunnath & Elad Arad & Ran Zalk & Itamar Kass & Anat Shahar & Albert Batushansky & Hanna Rapaport & Raz Jelinek, 2025. "Allosteric amyloid catalysis by coiled coil fibrils," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    5. Jinhao Que & Guangfu Xue & Tao Wang & Xiyun Jin & Zuxiang Wang & Yideng Cai & Wenyi Yang & Meng Luo & Qian Ding & Jinwei Zhang & Yilin Wang & Yuexin Yang & Fenglan Pang & Yi Hui & Zheng Wei & Jun Xion, 2025. "Identifying T cell antigen at the atomic level with graph convolutional network," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    6. Chongbing Liao & Qihui Liu & Gan Luo & Yinyue Luo & Dan Yao & Qingxia Wang & Jue Zhang & Yang Wu & Jialin Jin & Dan Xu & Wuyuan Lu, 2025. "Human neutrophil α-defensin HNP1 interacts with bacterial OmpA to promote Acinetobacter baumannii biofilm formation," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    7. Julian O. Streit & Sammy H. S. Chan & Saifu Daya & John Christodoulou, 2025. "Rational design of 19F NMR labelling sites to probe protein structure and interactions," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Max S. Kloet & Chatrin Chatrin & Rishov Mukhopadhyay & Bianca D. M. van Tol & Rebecca Smith & Sarah A. Rotman & Rayman T. N. Tjokrodirijo & Kang Zhu & Andrii Gorelik & Lucy Maginn & Paul R. Elliott & , 2025. "Identification of RNF114 as ADPr-Ub reader through non-hydrolysable ubiquitinated ADP-ribose," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    10. Yu Zhang & Tingting Zhang & Xue Xiao & Yejun Wang & Adam Kawalek & Jinzhao Ou & Anmin Ren & Wenhao Sun & Vincent Bakker & Yujie Liu & Yuelong Li & Liang Yang & Liang Ye & Ning Jia & Jan-Willem Veening, 2025. "CRISPRi screen identifies FprB as a synergistic target for gallium therapy in Pseudomonas aeruginosa," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    11. Michal Beffinger & Linda Schellhammer & Betül Taskoparan & Sereina Deplazes & Ulisse Salazar & Nazanin Tatari & Frauke Seehusen & Leopold Balthazar & Carl Philipp Zinner & Sabine Spath & Tala Shekaria, 2025. "FcRn-silencing of IL-12Fc prevents toxicity of local IL-12 therapy and prolongs survival in experimental glioblastoma," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    12. William J. Nicolas & Anna Shiriaeva & Michael W. Martynowycz & Angus C. Grey & Yasmeen N. Ruma & Paul J. Donaldson & Tamir Gonen, 2025. "Structure of the lens MP20 mediated adhesive junction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    13. Ai Tamura & Kazuyuki Yamagata & Takashi Kono & Masanori Fujimoto & Takahiro Fuchigami & Motoi Nishimura & Masataka Yokoyama & Akitoshi Nakayama & Naoko Hashimoto & Ikki Sakuma & Nobuyuki Mitsukawa & Y, 2025. "p53-inducible lncRNA LOC644656 causes genotoxic stress-induced stem cell maldifferentiation and cancer chemoresistance," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    14. Gašper Šolinc & Marija Srnko & Franci Merzel & Ana Crnković & Mirijam Kozorog & Marjetka Podobnik & Gregor Anderluh, 2025. "Cryo-EM structures of a protein pore reveal a cluster of cholesterol molecules and diverse roles of membrane lipids," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Tae-Kyeong Jeong & R. Ciaran MacKenzie Frater & Jongha Yoon & Anja Groth & Ji-Joon Song, 2025. "CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    16. Timothy Atkinson & Thomas D. Barrett & Scott Cameron & Bora Guloglu & Matthew Greenig & Charlie B. Tan & Louis Robinson & Alex Graves & Liviu Copoiu & Alexandre Laterre, 2025. "Protein sequence modelling with Bayesian flow networks," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    17. Juan G. Carvajal-Patiño & Vincent Mallet & David Becerra & Luis Fernando Niño Vasquez & Carlos Oliver & Jérôme Waldispühl, 2025. "RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. James Hodgkinson-Bean & Rafael Ayala & Nadishka Jayawardena & Georgia L. Rutter & Bridget N. J. Watson & David Mayo-Muñoz & James Keal & Peter C. Fineran & Matthias Wolf & Mihnea Bostina, 2025. "Global structural survey of the flagellotropic myophage φTE infecting agricultural pathogen Pectobacterium atrosepticum," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    19. Jinsheng Fan & Renzhi Li & Mingmeng Zhao & Xishan Pan, 2025. "A BiLSTM-Based Hybrid Ensemble Approach for Forecasting Suspended Sediment Concentrations: Application to the Upper Yellow River," Land, MDPI, vol. 14(6), pages 1-29, June.
    20. Xinwei Song & Yiling Wang & Youjing Wang & Kankan Zhao & Di Tong & Ruichuan Gao & Xiaofei Lv & Dedong Kong & Yunjie Ruan & Mengcen Wang & Xianjin Tang & Fangbai Li & Yongming Luo & Yongguan Zhu & Jian, 2025. "Rhizosphere-triggered viral lysogeny mediates microbial metabolic reprogramming to enhance arsenic oxidation," Nature Communications, Nature, vol. 16(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61209-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.