IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61123-3.html
   My bibliography  Save this article

Solvent-free thermoplastic foaming for superelastic graphene monoliths

Author

Listed:
  • Zeshen Li

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Xiaotong Li

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Kai Pang

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Kaiwen Li

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Yue Gao

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Chengqi Zhang

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Jiahao Lu

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Yingjun Liu

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Zhen Xu

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

  • Chao Gao

    (MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University)

Abstract

Graphene monoliths with high porosity inherit extraordinary properties of graphene and establish a versatile platform to integrate diverse materials for multifunctional applications. To date, many methods have been invented to prepare graphene monoliths, including freeze-drying and templating, but these predominantly rely on fluid-based process. Direct thermoplastic foaming for graphene monoliths, as seen in the polymer industry, remains undeveloped. Here, we demonstrate a direct thermoplastic foaming strategy of a graphene monolith with high elasticity and multifunctionality. The intercalation of polymers enables the thermal plasticity of graphene oxide complex solids and allows precise control of the cellular structure of the graphene monolith. The direct thermoplastic foaming method is applicable to graphene monolith bulks, 3D-printed structures, and other 2D-nanosheets monoliths. This approach provides a facile, nontoxic, rapid and low-cost route for the industrial production of monoliths comprising graphene and various nanomaterials.

Suggested Citation

  • Zeshen Li & Xiaotong Li & Kai Pang & Kaiwen Li & Yue Gao & Chengqi Zhang & Jiahao Lu & Yingjun Liu & Zhen Xu & Chao Gao, 2025. "Solvent-free thermoplastic foaming for superelastic graphene monoliths," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61123-3
    DOI: 10.1038/s41467-025-61123-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61123-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61123-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingpeng Wu & Ningbo Yi & Lu Huang & Tengfei Zhang & Shaoli Fang & Huicong Chang & Na Li & Jiyoung Oh & Jae Ah Lee & Mikhail Kozlov & Alin C. Chipara & Humberto Terrones & Peishuang Xiao & Guankui Lon, 2015. "Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    2. Mingmao Wu & Hongya Geng & Yajie Hu & Hongyun Ma & Ce Yang & Hongwu Chen & Yeye Wen & Huhu Cheng & Chun Li & Feng Liu & Lan Jiang & Liangti Qu, 2022. "Superelastic graphene aerogel-based metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Cheng Zhu & T. Yong-Jin Han & Eric B. Duoss & Alexandra M. Golobic & Joshua D. Kuntz & Christopher M. Spadaccini & Marcus A. Worsley, 2015. "Highly compressible 3D periodic graphene aerogel microlattices," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    5. Peng Li & Mincheng Yang & Yingjun Liu & Huasong Qin & Jingran Liu & Zhen Xu & Yilun Liu & Fanxu Meng & Jiahao Lin & Fang Wang & Chao Gao, 2020. "Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Huai-Ling Gao & Yin-Bo Zhu & Li-Bo Mao & Feng-Chao Wang & Xi-Sheng Luo & Yang-Yi Liu & Yang Lu & Zhao Pan & Jin Ge & Wei Shen & Ya-Rong Zheng & Liang Xu & Lin-Jun Wang & Wei-Hong Xu & Heng-An Wu & Shu, 2016. "Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    7. Ling Qiu & Jeffery Z. Liu & Shery L.Y. Chang & Yanzhe Wu & Dan Li, 2012. "Biomimetic superelastic graphene-based cellular monoliths," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    8. Changxia Li & Jin Yang & Pradip Pachfule & Shuang Li & Meng-Yang Ye & Johannes Schmidt & Arne Thomas, 2020. "Ultralight covalent organic framework/graphene aerogels with hierarchical porosity," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhuang & De Lu & Jijun Zhang & Pengfei Guo & Lei Su & Yuanbin Qin & Peng Zhang & Liang Xu & Min Niu & Kang Peng & Hongjie Wang, 2023. "Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Mingmao Wu & Hongya Geng & Yajie Hu & Hongyun Ma & Ce Yang & Hongwu Chen & Yeye Wen & Huhu Cheng & Chun Li & Feng Liu & Lan Jiang & Liangti Qu, 2022. "Superelastic graphene aerogel-based metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Xinlei Shi & Xiangqian Fan & Yinbo Zhu & Yang Liu & Peiqi Wu & Renhui Jiang & Bao Wu & Heng-An Wu & He Zheng & Jianbo Wang & Xinyi Ji & Yongsheng Chen & Jiajie Liang, 2022. "Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Goharshadi, Elaheh K. & Vojdani Saghir, Siavosh & Niazi, Zohreh & Shafaee, Masoomeh & Sajjadizadeh, Halimeh-Sadat & Karimi-Nazarabad, Mahdi & Peighambari-kalat, Saeid & Goharshadi, Kimiya & Nejati, Ma, 2025. "Functionalized wood sponges: Advanced biomass materials for renewable energies, freshwater production, energy storage, and environmental remediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    7. Paul Smith & Jiayue Hu & Anthony Griffin & Mark Robertson & Alejandro Güillen Obando & Ethan Bounds & Carmen B. Dunn & Changhuai Ye & Ling Liu & Zhe Qiang, 2024. "Accurate additive manufacturing of lightweight and elastic carbons using plastic precursors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    9. Amin Farzaneh & Nikhil Pawar & Carlos M. Portela & Jonathan B. Hopkins, 2022. "Sequential metamaterials with alternating Poisson’s ratios," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Peng Li & Ziqiu Wang & Yuxiang Qi & Gangfeng Cai & Yingjie Zhao & Xin Ming & Zizhen Lin & Weigang Ma & Jiahao Lin & Hang Li & Kai Shen & Yingjun Liu & Zhen Xu & Zhiping Xu & Chao Gao, 2024. "Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Xiaoyu Zhang & Qi Sun & Xing Liang & Puzhong Gu & Zhenyu Hu & Xiao Yang & Muxiang Liu & Zejun Sun & Jia Huang & Guangming Wu & Guoqing Zu, 2024. "Stretchable and negative-Poisson-ratio porous metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Weijun Weng & Jia Guo, 2022. "The effect of enantioselective chiral covalent organic frameworks and cysteine sacrificial donors on photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Shu-Yan Jiang & Zhi-Bei Zhou & Shi-Xian Gan & Ya Lu & Chao Liu & Qiao-Yan Qi & Jin Yao & Xin Zhao, 2024. "Creating amphiphilic porosity in two-dimensional covalent organic frameworks via steric-hindrance-mediated precision hydrophilic-hydrophobic microphase separation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Tsang, Chi Him Alpha & Huang, Haibao & Xuan, Jin & Wang, Huizhi & Leung, D.Y.C., 2020. "Graphene materials in green energy applications: Recent development and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Bing Lu & Li Yu & Yajie Hu & Ying Wang & Fei Zhao & Yang Zhao & Feng Liu & Huhu Cheng & Liangti Qu, 2024. "Evaporate-casting of curvature gradient graphene superstructures for ultra-high strength structural materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Lin, Zizhen & Ping, Xiaofan & Zhao, Dongming & Cai, Zihe & Wang, Xingtao & Zhang, Chi & Wang, Lichuang & Li, Menglei & Chen, Xiongfei & Niu, Jingkai & Xue, Yao & Liu, Yun & Li, Xinlian & Qin, Xiaojun , 2024. "A biomimetic non-woven fabric with passive thermal-insulation and active heat-recovering," Applied Energy, Elsevier, vol. 353(PA).
    18. Shuai Fu & Xiao Li & Guanzhao Wen & Yunyu Guo & Matthew A. Addicoat & Mischa Bonn & Enquan Jin & Klaus Müllen & Hai I. Wang, 2025. "Dimensional evolution of charge mobility and porosity in covalent organic frameworks," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Ke Zhan & Yucong Chen & Zhiyuan Xiong & Yulun Zhang & Siyuan Ding & Fangzheng Zhen & Zhenshi Liu & Qiang Wei & Minsu Liu & Bo Sun & Hui-Ming Cheng & Ling Qiu, 2024. "Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61123-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.