IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61045-0.html
   My bibliography  Save this article

Emergence of cellular nematic order is a conserved feature of gastrulation in animal embryos

Author

Listed:
  • Xin Li

    (University of Texas at Austin)

  • Robert J. Huebner

    (University of Texas at Austin)

  • Margot L. K. Williams

    (Baylor College of Medicine
    Washington University School of Medicine)

  • Jessica Sawyer

    (Duke University
    University of North Carolina at Chapel Hill)

  • Mark Peifer

    (University of North Carolina at Chapel Hill)

  • John B. Wallingford

    (University of Texas at Austin)

  • D. Thirumalai

    (University of Texas at Austin
    University of Texas at Austin)

Abstract

Cells undergo dramatic morphological changes during embryogenesis, yet how these changes affect the formation of ordered tissues remains elusive. Here, we show that a phase transition leading to the formation of a nematic liquid crystal state during gastrulation in the development of embryos of fish, frogs, and fruit flies occurs by a common mechanism despite substantial differences between these evolutionarily distant animals. Importantly, nematic order forms early before any discernible changes in the shapes of cells. All three species exhibit similar propagation of the nematic phase, reminiscent of nucleation and growth mechanisms. The spatial correlations in the nematic phase in the notochord region are long-ranged and follow a similar power-law decay ( $$y \sim {x}^{-\alpha }\,$$ y ~ x − α ) with α less than unity, indicating a common underlying physical mechanism. To explain the common physical mechanism, we created a theoretical model that not only explains the experimental observations but also predicts that the nematic phase should be disrupted upon loss of planar cell polarity (frog), cell adhesion (frog), and notochord boundary formation (zebrafish). Gene knockdown or mutational studies confirm the theoretical predictions. The combination of experiments and theory provides a unified framework for understanding the potentially universal features of metazoan embryogenesis, in the process shedding light on the advent of ordered structures during animal development.

Suggested Citation

  • Xin Li & Robert J. Huebner & Margot L. K. Williams & Jessica Sawyer & Mark Peifer & John B. Wallingford & D. Thirumalai, 2025. "Emergence of cellular nematic order is a conserved feature of gastrulation in animal embryos," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61045-0
    DOI: 10.1038/s41467-025-61045-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61045-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61045-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyogo Kawaguchi & Ryoichiro Kageyama & Masaki Sano, 2017. "Topological defects control collective dynamics in neural progenitor cell cultures," Nature, Nature, vol. 545(7654), pages 327-331, May.
    2. Thuan Beng Saw & Amin Doostmohammadi & Vincent Nier & Leyla Kocgozlu & Sumesh Thampi & Yusuke Toyama & Philippe Marcq & Chwee Teck Lim & Julia M. Yeomans & Benoit Ladoux, 2017. "Topological defects in epithelia govern cell death and extrusion," Nature, Nature, vol. 544(7649), pages 212-216, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Eckert & Benoît Ladoux & René-Marc Mège & Luca Giomi & Thomas Schmidt, 2023. "Hexanematic crossover in epithelial monolayers depends on cell adhesion and cell density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Zihui Zhao & He Li & Yisong Yao & Yongfeng Zhao & Francesca Serra & Kyogo Kawaguchi & Hepeng Zhang & Masaki Sano, 2025. "Integer topological defects offer a methodology to quantify and classify active cell monolayers," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Yingwei Wang & Qi Li & Jupeng Zhao & Jiamin Chen & Dongxue Wu & Youling Zheng & Jiaxin Wu & Jie Liu & Jianlong Lu & Jianhua Zhang & Zheng Wu, 2023. "Mechanically induced pyroptosis enhances cardiosphere oxidative stress resistance and metabolism for myocardial infarction therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Endao Han & Chenyi Fei & Ricard Alert & Katherine Copenhagen & Matthias D. Koch & Ned S. Wingreen & Joshua W. Shaevitz, 2025. "Local polar order controls mechanical stress and triggers layer formation in Myxococcus xanthus colonies," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    5. Pragya Arora & Souvik Sadhukhan & Saroj Kumar Nandi & Dapeng Bi & A. K. Sood & Rajesh Ganapathy, 2024. "A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Claire Leclech & David Gonzalez-Rodriguez & Aurélien Villedieu & Thévy Lok & Anne-Marie Déplanche & Abdul I. Barakat, 2022. "Topography-induced large-scale antiparallel collective migration in vascular endothelium," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Mehrana R. Nejad & Liam J. Ruske & Molly McCord & Jun Zhang & Guanming Zhang & Jacob Notbohm & Julia M. Yeomans, 2024. "Stress-shape misalignment in confluent cell layers," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jan Rozman & KVS Chaithanya & Julia M. Yeomans & Rastko Sknepnek, 2025. "Vertex model with internal dissipation enables sustained flows," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    9. Tom Brandstätter & David B. Brückner & Yu Long Han & Ricard Alert & Ming Guo & Chase P. Broedersz, 2023. "Curvature induces active velocity waves in rotating spherical tissues," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Antonio Lamura & Adriano Tiribocchi, 2021. "Shearing Effects on the Phase Coarsening of Binary Mixtures Using the Active Model B," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    11. Joanny, Jean-François & Indekeu, Joseph O., 2023. "Statistical physics of active matter, cell division and cell aggregation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 631(C).
    12. Ariadna Marín-Llauradó & Sohan Kale & Adam Ouzeri & Tom Golde & Raimon Sunyer & Alejandro Torres-Sánchez & Ernest Latorre & Manuel Gómez-González & Pere Roca-Cusachs & Marino Arroyo & Xavier Trepat, 2023. "Mapping mechanical stress in curved epithelia of designed size and shape," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Japinder Nijjer & Changhao Li & Qiuting Zhang & Haoran Lu & Sulin Zhang & Jing Yan, 2021. "Mechanical forces drive a reorientation cascade leading to biofilm self-patterning," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. A. Tiribocchi & M. Durve & M. Lauricella & A. Montessori & D. Marenduzzo & S. Succi, 2023. "The crucial role of adhesion in the transmigration of active droplets through interstitial orifices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Mondal, Partha Sarathi & Mishra, Pawan Kumar & Vicsek, Tamás & Mishra, Shradha, 2025. "Dynamical swirl structures powered by microswimmers in active nematics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
    16. Yee Han Tee & Wei Jia Goh & Xianbin Yong & Hui Ting Ong & Jinrong Hu & Ignacius Yan Yun Tay & Shidong Shi & Salma Jalal & Samuel F. H. Barnett & Pakorn Kanchanawong & Wenmao Huang & Jie Yan & Yong Ann, 2023. "Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Sorosh Amiri & Camelia Muresan & Xingbo Shang & Clotilde Huet-Calderwood & Martin A. Schwartz & David A. Calderwood & Michael Murrell, 2023. "Intracellular tension sensor reveals mechanical anisotropy of the actin cytoskeleton," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61045-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.