IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60978-w.html
   My bibliography  Save this article

An O-glycopeptide participates in the formation of distinct Aβ42 fibril structures and attenuates Aβ42 neurotoxicity

Author

Listed:
  • Qijia Wei

    (Peking University
    Peking University
    Peking University)

  • Dangliang Liu

    (Peking University
    Peking University
    Peking University)

  • Wencheng Xia

    (Chinese Academy of Sciences
    Shijingshan District)

  • Fengzhang Wang

    (Peking University)

  • Lu Huang

    (Peking University
    Peking University
    Peking University)

  • Jun Zhang

    (Peking University
    Peking University
    Peking University)

  • Xiaoya Wang

    (Peking University
    Peking University)

  • Zhongxin Xu

    (Peking University
    Peking University
    Peking University)

  • Changdong He

    (Peking University
    Peking University
    Peking University)

  • Wenzhe Li

    (Peking University)

  • Xiaomeng Shi

    (Peking University)

  • Chu Wang

    (Peking University
    Peking University)

  • Yuan Liu

    (Peking University)

  • Cong Liu

    (Chinese Academy of Sciences
    Fudan University
    Shanghai Key Laboratory of Aging Studies)

  • Suwei Dong

    (Peking University
    Peking University
    Peking University
    Peking University)

Abstract

The self-assembly of biomolecules through noncovalent interactions is critical in both physiological and pathological processes, as exemplified by the assembly of amyloid β peptide (Aβ) into oligomers or fibrils in Alzheimer’s disease (AD). Developing molecules that can modulate this assembly process holds significant mechanistic and therapeutic potential. In this study, we identified glycopeptides as a class of protein aggregation modulators, showing that β-N-acetylgalactosamine (β-GalNAc)-modified Aβ9-21 promotes Aβ42 fibrillation while reducing its toxic oligomers. Using biochemical assays, cryo-EM, and molecular dynamics simulations, we demonstrated that β-GalNAc-modified Aβ9-21 coassembles with Aβ42, forming unique fibril structures stabilized by both hydrophobic interactions and an organized hydrogen bond network facilitated by the glycopeptide. Importantly, β-GalNAc-modified Aβ9-21 can alleviate the neurotoxicity of Aβ42 in neuronal cells and an AD male mouse model. These findings underscore the potential of glycopeptides in regulating amyloid aggregation and provide structural insights for designing molecules targeting amyloid-related pathologies.

Suggested Citation

  • Qijia Wei & Dangliang Liu & Wencheng Xia & Fengzhang Wang & Lu Huang & Jun Zhang & Xiaoya Wang & Zhongxin Xu & Changdong He & Wenzhe Li & Xiaomeng Shi & Chu Wang & Yuan Liu & Cong Liu & Suwei Dong, 2025. "An O-glycopeptide participates in the formation of distinct Aβ42 fibril structures and attenuates Aβ42 neurotoxicity," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60978-w
    DOI: 10.1038/s41467-025-60978-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60978-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60978-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinjian Hu & Wencheng Xia & Shuyi Zeng & Yeh-Jun Lim & Youqi Tao & Yunpeng Sun & Lang Zhao & Haosen Wang & Weidong Le & Dan Li & Shengnan Zhang & Cong Liu & Yan-Mei Li, 2024. "Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Gregory E. Merz & Matthew J. Chalkley & Sophia K. Tan & Eric Tse & Joanne Lee & Stanley B. Prusiner & Nick A. Paras & William F. DeGrado & Daniel R. Southworth, 2023. "Stacked binding of a PET ligand to Alzheimer’s tau paired helical filaments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Sarel J Fleishman & Andrew Leaver-Fay & Jacob E Corn & Eva-Maria Strauch & Sagar D Khare & Nobuyasu Koga & Justin Ashworth & Paul Murphy & Florian Richter & Gordon Lemmon & Jens Meiler & David Baker, 2011. "RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    4. Ryan Limbocker & Sean Chia & Francesco S. Ruggeri & Michele Perni & Roberta Cascella & Gabriella T. Heller & Georg Meisl & Benedetta Mannini & Johnny Habchi & Thomas C. T. Michaels & Pavan K. Challa &, 2019. "Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:plo:pbio00:3000919 is not listed on IDEAS
    2. Daniel Ellis & Julia Lederhofer & Oliver J. Acton & Yaroslav Tsybovsky & Sally Kephart & Christina Yap & Rebecca A. Gillespie & Adrian Creanga & Audrey Olshefsky & Tyler Stephens & Deleah Pettie & Mic, 2022. "Structure-based design of stabilized recombinant influenza neuraminidase tetramers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Yong Xu & Roberto Maya-Martinez & Nicolas Guthertz & George R. Heath & Iain W. Manfield & Alexander L. Breeze & Frank Sobott & Richard Foster & Sheena E. Radford, 2022. "Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Jonathan Yaacov Weinstein & Carlos Martí-Gómez & Rosalie Lipsh-Sokolik & Shlomo Yakir Hoch & Demian Liebermann & Reinat Nevo & Haim Weissman & Ekaterina Petrovich-Kopitman & David Margulies & Dmitry I, 2023. "Designed active-site library reveals thousands of functional GFP variants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Jared Adolf-Bryfogle & Oleks Kalyuzhniy & Michael Kubitz & Brian D Weitzner & Xiaozhen Hu & Yumiko Adachi & William R Schief & Roland L Dunbrack Jr., 2018. "RosettaAntibodyDesign (RAbD): A general framework for computational antibody design," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-38, April.
    6. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Jorge Roel-Touris & Marta Nadal & Enrique Marcos, 2023. "Single-chain dimers from de novo immunoglobulins as robust scaffolds for multiple binding loops," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Diego del Alamo & Kevin L Jagessar & Jens Meiler & Hassane S Mchaourab, 2021. "Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-18, June.
    9. Jaume Bonet & Sarah Wehrle & Karen Schriever & Che Yang & Anne Billet & Fabian Sesterhenn & Andreas Scheck & Freyr Sverrisson & Barbora Veselkova & Sabrina Vollers & Roxanne Lourman & Mélanie Villard , 2018. "Rosetta FunFolDes – A general framework for the computational design of functional proteins," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-30, November.
    10. Ryan P. McGlinchey & Sashary Ramos & Emilios K. Dimitriadis & C. Blake Wilson & Jennifer C. Lee, 2025. "Defining essential charged residues in fibril formation of a lysosomal derived N-terminal α-synuclein truncation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Sowmiya Palani & Yuka Machida & Julia R. Alvey & Vandana Mishra & Allison L. Welter & Gaofeng Cui & Benoît Bragantini & Maria Victoria Botuyan & Anh T. Q. Cong & Georges Mer & Matthew J. Schellenberg , 2024. "Dimerization-dependent serine protease activity of FAM111A prevents replication fork stalling at topoisomerase 1 cleavage complexes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Kristin J. Adolfsen & Isolde Callihan & Catherine E. Monahan & Per Jr. Greisen & James Spoonamore & Munira Momin & Lauren E. Fitch & Mary Joan Castillo & Lindong Weng & Lauren Renaud & Carl J. Weile &, 2021. "Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    13. Zachary R. Crook & Gregory P. Sevilla & Pamela Young & Emily J. Girard & Tinh-Doan Phi & Monique L. Howard & Jason Price & James M. Olson & Natalie W. Nairn, 2024. "CYpHER: catalytic extracellular targeted protein degradation with high potency and durable effect," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Karen J. Gonzalez & Jiachen Huang & Miria F. Criado & Avik Banerjee & Stephen M. Tompkins & Jarrod J. Mousa & Eva-Maria Strauch, 2024. "A general computational design strategy for stabilizing viral class I fusion proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Edward King & Sarah Maxel & Yulai Zhang & Karissa C. Kenney & Youtian Cui & Emma Luu & Justin B. Siegel & Gregory A. Weiss & Ray Luo & Han Li, 2022. "Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Yoko Fujita-Fujiharu & Shangfan Hu & Ai Hirabayashi & Yuki Takamatsu & Yen Ni Ng & Kazuya Houri & Yukiko Muramoto & Masahiro Nakano & Yukihiko Sugita & Takeshi Noda, 2025. "Structural basis for Ebola virus nucleocapsid assembly and function regulated by VP24," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    17. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    19. P. Konstantin Richter & Paula Blázquez-Sánchez & Ziyue Zhao & Felipe Engelberger & Christian Wiebeler & Georg Künze & Ronny Frank & Dana Krinke & Emanuele Frezzotti & Yuliia Lihanova & Patricia Falken, 2023. "Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Nikolaos Louros & Martin Wilkinson & Grigoria Tsaka & Meine Ramakers & Chiara Morelli & Teresa Garcia & Rodrigo Gallardo & Sam D’Haeyer & Vera Goossens & Dominique Audenaert & Dietmar Rudolf Thal & Ia, 2024. "Local structural preferences in shaping tau amyloid polymorphism," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    21. Julia Skokowa & Birte Hernandez Alvarez & Murray Coles & Malte Ritter & Masoud Nasri & Jérémy Haaf & Narges Aghaallaei & Yun Xu & Perihan Mir & Ann-Christin Krahl & Katherine W. Rogers & Kateryna Maks, 2022. "A topological refactoring design strategy yields highly stable granulopoietic proteins," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60978-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.