IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62998-y.html
   My bibliography  Save this article

In-cell structure and variability of pyrenoid Rubisco

Author

Listed:
  • Nadav Elad

    (Weizmann Institute of Science
    Harwell Science and Innovation Campus)

  • Zhen Hou

    (University of Oxford)

  • Maud Dumoux

    (Harwell Science & Innovation Campus)

  • Alireza Ramezani

    (University of Delaware)

  • Juan R. Perilla

    (University of Delaware)

  • Peijun Zhang

    (Harwell Science and Innovation Campus
    University of Oxford
    University of Oxford)

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is central to global CO2 fixation. In eukaryotic algae, its catalytic efficiency is enhanced through the pyrenoid - a protein-dense organelle within the chloroplast that concentrates CO2. Although Rubisco structure has been extensively studied in vitro, its native structure, dynamics and interactions within the pyrenoid remain elusive. Here, we present the native Rubisco structure inside the green alga Chlamydomonas reinhardtii determined by cryo-electron tomography and subtomogram averaging of cryo-focused ion beam milled cells. Multiple structural subsets of Rubisco are identified, stochastically distributed throughout the pyrenoid. While Rubisco adopts an active conformation in the best-resolved map, comparison among the subsets reveals significant local variations at the active site, at the large subunit dimer interfaces, and at binding protein contact regions. These findings offer a comprehensive understanding of the structure, dynamics, and functional organization of native Rubisco within the pyrenoid, providing valuable insights into its critical role in CO2 fixation.

Suggested Citation

  • Nadav Elad & Zhen Hou & Maud Dumoux & Alireza Ramezani & Juan R. Perilla & Peijun Zhang, 2025. "In-cell structure and variability of pyrenoid Rubisco," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62998-y
    DOI: 10.1038/s41467-025-62998-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62998-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62998-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yun-Tao Liu & Heng Zhang & Hui Wang & Chang-Lu Tao & Guo-Qiang Bi & Z. Hong Zhou, 2022. "Isotropic reconstruction for electron tomography with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Tao Ni & Qiuyao Jiang & Pei Cing Ng & Juan Shen & Hao Dou & Yanan Zhu & Julika Radecke & Gregory F. Dykes & Fang Huang & Lu-Ning Liu & Peijun Zhang, 2023. "Intrinsically disordered CsoS2 acts as a general molecular thread for α-carboxysome shell assembly," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Tobias Wunder & Steven Le Hung Cheng & Soak-Kuan Lai & Hoi-Yeung Li & Oliver Mueller-Cajar, 2018. "The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Lauren Ann Metskas & Davi Ortega & Luke M. Oltrogge & Cecilia Blikstad & Derik R. Lovejoy & Thomas G. Laughlin & David F. Savage & Grant J. Jensen, 2022. "Rubisco forms a lattice inside alpha-carboxysomes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Antoine Loquet & Nikolaos G. Sgourakis & Rashmi Gupta & Karin Giller & Dietmar Riedel & Christian Goosmann & Christian Griesinger & Michael Kolbe & David Baker & Stefan Becker & Adam Lange, 2012. "Correction: Corrigendum: Atomic model of the type III secretion system needle," Nature, Nature, vol. 488(7413), pages 684-684, August.
    6. Sarel J Fleishman & Andrew Leaver-Fay & Jacob E Corn & Eva-Maria Strauch & Sagar D Khare & Nobuyasu Koga & Justin Ashworth & Paul Murphy & Florian Richter & Gordon Lemmon & Jens Meiler & David Baker, 2011. "RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    7. Antoine Loquet & Nikolaos G. Sgourakis & Rashmi Gupta & Karin Giller & Dietmar Riedel & Christian Goosmann & Christian Griesinger & Michael Kolbe & David Baker & Stefan Becker & Adam Lange, 2012. "Atomic model of the type III secretion system needle," Nature, Nature, vol. 486(7402), pages 276-279, June.
    8. H. Wang & X. Yan & H. Aigner & A. Bracher & N. D. Nguyen & W. Y. Hee & B. M. Long & G. D. Price & F. U. Hartl & M. Hayer-Hartl, 2019. "Rubisco condensate formation by CcmM in β-carboxysome biogenesis," Nature, Nature, vol. 566(7742), pages 131-135, February.
    9. Tao Ni & Yaqi Sun & Will Burn & Monsour M. J. Al-Hazeem & Yanan Zhu & Xiulian Yu & Lu-Ning Liu & Peijun Zhang, 2022. "Structure and assembly of cargo Rubisco in two native α-carboxysomes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. William R. Cline, 2007. "Global Warming and Agriculture: Impact Estimates by Country," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 4037, October.
    11. Angela M. Hessler & Donald R. Lowe & Robert L. Jones & Dennis K. Bird, 2004. "A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago," Nature, Nature, vol. 428(6984), pages 736-738, April.
    12. Jean-Philippe Demers & Birgit Habenstein & Antoine Loquet & Suresh Kumar Vasa & Karin Giller & Stefan Becker & David Baker & Adam Lange & Nikolaos G. Sgourakis, 2014. "High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Sleutel & Ravi R. Sonani & Jessalyn G. Miller & Fengbin Wang & Andres Gonzalez Socorro & Yang Chen & Reece Martin & Borries Demeler & Michael J. Rudolph & Vikram Alva & Han Remaut & Edward H. Ege, 2025. "Donor strand complementation and calcium ion coordination drive the chaperone-free polymerization of archaeal cannulae," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    2. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Tao Ni & Qiuyao Jiang & Pei Cing Ng & Juan Shen & Hao Dou & Yanan Zhu & Julika Radecke & Gregory F. Dykes & Fang Huang & Lu-Ning Liu & Peijun Zhang, 2023. "Intrinsically disordered CsoS2 acts as a general molecular thread for α-carboxysome shell assembly," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Mohammad Jafar Tehrani & Isamu Matsuda & Atsushi Yamagata & Yu Kodama & Tatsuya Matsunaga & Mayuko Sato & Kiminori Toyooka & Dan McElheny & Naohiro Kobayashi & Mikako Shirouzu & Yoshitaka Ishii, 2024. "E22G Aβ40 fibril structure and kinetics illuminate how Aβ40 rather than Aβ42 triggers familial Alzheimer’s," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Yunpeng Liu & Huihui Zhang & Jing Wang & Wenting Gao & Xiting Sun & Qin Xiong & Xia Shu & Youzhi Miao & Qirong Shen & Weibing Xun & Ruifu Zhang, 2024. "Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Lauren Ann Metskas & Davi Ortega & Luke M. Oltrogge & Cecilia Blikstad & Derik R. Lovejoy & Thomas G. Laughlin & David F. Savage & Grant J. Jensen, 2022. "Rubisco forms a lattice inside alpha-carboxysomes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. repec:plo:pbio00:3000919 is not listed on IDEAS
    8. Tingey-Holyoak, Joanne & Cooper, Bethany & Crase, Lin & Pisaniello, John, 2024. "A framework for supporting climate-exposed asset decision-making in agriculture," Land Use Policy, Elsevier, vol. 137(C).
    9. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    10. Daniel Ellis & Julia Lederhofer & Oliver J. Acton & Yaroslav Tsybovsky & Sally Kephart & Christina Yap & Rebecca A. Gillespie & Adrian Creanga & Audrey Olshefsky & Tyler Stephens & Deleah Pettie & Mic, 2022. "Structure-based design of stabilized recombinant influenza neuraminidase tetramers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    12. Hans-Martin Füssel, 2010. "Review and Quantitative Analysis of Indices of Climate Change Exposure, Adaptive Capacity, Sensitivity, and Impacts," World Bank Publications - Reports 9193, The World Bank Group.
    13. Abu Hatab, Assem, 2015. "The Impact of Regional Integration on Intra-Arab Trade in Agrifood Commodities: A Panel Data Approach," MPRA Paper 67991, University Library of Munich, Germany, revised 07 Jun 2015.
    14. Balistreri, Edward J. & Tarr, David G., 2011. "Services Liberalization in Preferential Trade Arrangements: The Case of Kenya," Conference papers 332152, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Espinosa, Cristian & Gutierrez Cubillos, Pablo & Castro Nofal, Bastián, 2025. "The carbon tax as an automatic stabilizer in a commodity-producing Small Open Economy," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 835-853.
    16. David Wheeler & Dan Hammer, 2010. "The Economics of Population Policy for Carbon Emissions Reduction in Developing Countries," Working Papers id:3231, eSocialSciences.
    17. Cattaneo, Cristina & Peri, Giovanni, 2016. "The migration response to increasing temperatures," Journal of Development Economics, Elsevier, vol. 122(C), pages 127-146.
    18. Renato Vargas & Pamela Escobar & Maynor Cabrera & Javier Cabrera & Violeta Hernández & Vivian Guzmán & Martin Cicowiez, 2017. "Climate risk and food security in Guatemala," Working Papers MPIA 2017-01, PEP-MPIA.
    19. Sudarshan Chalise & Dr Athula Naranpanawa, 2016. "Climate change adaptation in agriculture: A general equilibrium analysis of land re-allocation in Nepal," EcoMod2016 9272, EcoMod.
    20. Shankar Prasad Acharya, Ph.D. & Guna Raj Bhatta, 2013. "Impact of Climate Change on Agricultural Growth in Nepal," NRB Economic Review, Nepal Rastra Bank, Economic Research Department, vol. 25(2), pages 1-16, October.
    21. Dudu, Hasan & Cakmak, Erol H., 2014. "An integrated analysis of economywide effects of climate change," WIDER Working Paper Series 106, World Institute for Development Economic Research (UNU-WIDER).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62998-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.