IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60952-6.html
   My bibliography  Save this article

Microsecond-lived quantum states in a carbon-based circuit driven by cavity photons

Author

Listed:
  • B. Neukelmance

    (Université Paris Cité
    C12 Quantum Electronics)

  • B. Hue

    (Université Paris Cité
    C12 Quantum Electronics)

  • Q. Schaeverbeke

    (C12 Quantum Electronics)

  • L. Jarjat

    (Université Paris Cité)

  • A. Théry

    (Université Paris Cité)

  • J. Craquelin

    (Université Paris Cité)

  • W. Legrand

    (Université Paris Cité
    C12 Quantum Electronics)

  • T. Cubaynes

    (Université Paris Cité)

  • G. Abulizi

    (C12 Quantum Electronics)

  • J. Becdelievre

    (C12 Quantum Electronics)

  • M. El Abbassi

    (C12 Quantum Electronics)

  • A. Larrouy

    (C12 Quantum Electronics)

  • K. F. Ourak

    (C12 Quantum Electronics)

  • D. Stefani

    (C12 Quantum Electronics)

  • J. A. Sulpizio

    (C12 Quantum Electronics)

  • A. Cottet

    (Université Paris Cité
    Sorbonne Université)

  • M. M. Desjardins

    (C12 Quantum Electronics)

  • T. Kontos

    (Université Paris Cité
    Sorbonne Université)

  • M. R. Delbecq

    (Université Paris Cité
    Sorbonne Université
    Institut universitaire de France (IUF))

Abstract

Semiconductor quantum dots are an attractive platform for the realisation of quantum processors. To achieve long-range coupling between them, quantum dots have been integrated into microwave cavities. However, it has been shown that their coherence is then reduced compared to their cavity-free implementations. Here, we manipulate the quantum states of a suspended carbon nanotube double quantum dot with ferromagnetic contacts embedded in a microwave cavity. By performing quantum manipulations via the cavity photons, we demonstrate coherence times of the order of 1.3 μs, two orders of magnitude larger than those measured so far in any carbon quantum circuit and one order of magnitude larger than silicon-based quantum dots in comparable environment. This holds promise for carbon as a host material for spin qubits in circuit quantum electrodynamics.

Suggested Citation

  • B. Neukelmance & B. Hue & Q. Schaeverbeke & L. Jarjat & A. Théry & J. Craquelin & W. Legrand & T. Cubaynes & G. Abulizi & J. Becdelievre & M. El Abbassi & A. Larrouy & K. F. Ourak & D. Stefani & J. A., 2025. "Microsecond-lived quantum states in a carbon-based circuit driven by cavity photons," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60952-6
    DOI: 10.1038/s41467-025-60952-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60952-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60952-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. J. Landig & J. V. Koski & P. Scarlino & U. C. Mendes & A. Blais & C. Reichl & W. Wegscheider & A. Wallraff & K. Ensslin & T. Ihn, 2018. "Coherent spin–photon coupling using a resonant exchange qubit," Nature, Nature, vol. 560(7717), pages 179-184, August.
    2. Jia-Shiang Chen & Kasidet Jing Trerayapiwat & Lei Sun & Matthew D. Krzyaniak & Michael R. Wasielewski & Tijana Rajh & Sahar Sharifzadeh & Xuedan Ma, 2023. "Long-lived electronic spin qubits in single-walled carbon nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. X. Mi & M. Benito & S. Putz & D. M. Zajac & J. M. Taylor & Guido Burkard & J. R. Petta, 2018. "A coherent spin–photon interface in silicon," Nature, Nature, vol. 555(7698), pages 599-603, March.
    4. L. Petit & H. G. J. Eenink & M. Russ & W. I. L. Lawrie & N. W. Hendrickx & S. G. J. Philips & J. S. Clarke & L. M. K. Vandersypen & M. Veldhorst, 2020. "Universal quantum logic in hot silicon qubits," Nature, Nature, vol. 580(7803), pages 355-359, April.
    5. C. H. Yang & R. C. C. Leon & J. C. C. Hwang & A. Saraiva & T. Tanttu & W. Huang & J. Camirand Lemyre & K. W. Chan & K. Y. Tan & F. E. Hudson & K. M. Itoh & A. Morello & M. Pioro-Ladrière & A. Laucht &, 2020. "Operation of a silicon quantum processor unit cell above one kelvin," Nature, Nature, vol. 580(7803), pages 350-354, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. J. H. Ungerer & A. Pally & A. Kononov & S. Lehmann & J. Ridderbos & P. P. Potts & C. Thelander & K. A. Dick & V. F. Maisi & P. Scarlino & A. Baumgartner & C. Schönenberger, 2024. "Strong coupling between a microwave photon and a singlet-triplet qubit," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. S. Andersson & H. Havir & A. Ranni & S. Haldar & V. F. Maisi, 2025. "High-impedance microwave resonators with two-photon nonlinear effects," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    6. Jaeyong Jeong & Seong Kwang Kim & Yoon-Je Suh & Jisung Lee & Joonyoung Choi & Joon Pyo Kim & Bong Ho Kim & Juhyuk Park & Joonsup Shim & Nahyun Rheem & Chan Jik Lee & Younjung Jo & Dae-Myeong Geum & Se, 2024. "Cryogenic III-V and Nb electronics integrated on silicon for large-scale quantum computing platforms," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. H. Geng & M. Kiczynski & A. V. Timofeev & E. N. Osika & D. Keith & J. Rowlands & L. Kranz & R. Rahman & Y. Chung & J. G. Keizer & S. K. Gorman & M. Y. Simmons, 2025. "High-fidelity sub-microsecond single-shot electron spin readout above 3.5 K," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    8. Ryan M. Jock & N. Tobias Jacobson & Martin Rudolph & Daniel R. Ward & Malcolm S. Carroll & Dwight R. Luhman, 2022. "A silicon singlet–triplet qubit driven by spin-valley coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Matthias Künne & Alexander Willmes & Max Oberländer & Christian Gorjaew & Julian D. Teske & Harsh Bhardwaj & Max Beer & Eugen Kammerloher & René Otten & Inga Seidler & Ran Xue & Lars R. Schreiber & He, 2024. "The SpinBus architecture for scaling spin qubits with electron shuttling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Andreas Gritsch & Alexander Ulanowski & Jakob Pforr & Andreas Reiserer, 2025. "Optical single-shot readout of spin qubits in silicon," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    11. Franco Palma & Fabian Oppliger & Wonjin Jang & Stefano Bosco & Marián Janík & Stefano Calcaterra & Georgios Katsaros & Giovanni Isella & Daniel Loss & Pasquale Scarlino, 2024. "Strong hole-photon coupling in planar Ge for probing charge degree and strongly correlated states," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Cristóbal Lledó & Rémy Dassonneville & Adrien Moulinas & Joachim Cohen & Ross Shillito & Audrey Bienfait & Benjamin Huard & Alexandre Blais, 2023. "Cloaking a qubit in a cavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    13. Amelia Domínguez-Celorrio & Leonard Edens & Sofía Sanz & Manuel Vilas-Varela & Jose Martinez-Castro & Diego Peña & Véronique Langlais & Thomas Frederiksen & José I. Pascual & David Serrate, 2025. "Systematic modulation of charge and spin in graphene nanoribbons on MgO," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    14. Jesús D. Cifuentes & Tuomo Tanttu & Will Gilbert & Jonathan Y. Huang & Ensar Vahapoglu & Ross C. C. Leon & Santiago Serrano & Dennis Otter & Daniel Dunmore & Philip Y. Mai & Frédéric Schlattner & Meng, 2024. "Bounds to electron spin qubit variability for scalable CMOS architectures," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Pierre Hamonic & Martin Nurizzo & Jayshankar Nath & Matthieu C. Dartiailh & Victor Elhomsy & Mathis Fragnol & Biel Martinez & Pierre-Louis Julliard & Bruna Cardoso Paz & Mathilde Ouvrier-Buffet & Jean, 2025. "Combining multiplexed gate-based readout and isolated CMOS quantum dot arrays," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    17. Pei-Yuan Wu & Wei-Qing Lee & Chang-Hua Liu & Chen-Bin Huang, 2024. "Coherent control of enhanced second-harmonic generation in a plasmonic nanocircuit using a transition metal dichalcogenide monolayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Marián Janík & Kevin Roux & Carla Borja-Espinosa & Oliver Sagi & Abdulhamid Baghdadi & Thomas Adletzberger & Stefano Calcaterra & Marc Botifoll & Alba Garzón Manjón & Jordi Arbiol & Daniel Chrastina &, 2025. "Strong charge-photon coupling in planar germanium enabled by granular aluminium superinductors," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    19. Xingyu Gao & Sumukh Vaidya & Saakshi Dikshit & Peng Ju & Kunhong Shen & Yuanbin Jin & Shixiong Zhang & Tongcang Li, 2024. "Nanotube spin defects for omnidirectional magnetic field sensing," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60952-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.