IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45235-w.html
   My bibliography  Save this article

Strong coupling between a microwave photon and a singlet-triplet qubit

Author

Listed:
  • J. H. Ungerer

    (University of Basel
    University of Basel)

  • A. Pally

    (University of Basel)

  • A. Kononov

    (University of Basel)

  • S. Lehmann

    (Lund University)

  • J. Ridderbos

    (University of Basel
    University of Twente)

  • P. P. Potts

    (University of Basel
    University of Basel)

  • C. Thelander

    (Lund University)

  • K. A. Dick

    (Lund University)

  • V. F. Maisi

    (Lund University)

  • P. Scarlino

    (Ecole Polytechnique Fédérale de Lausanne)

  • A. Baumgartner

    (University of Basel
    University of Basel)

  • C. Schönenberger

    (University of Basel
    University of Basel)

Abstract

Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator. The quantum confinement in the nanowire is achieved using deterministically grown wurtzite tunnel barriers. Our experiments on even charge parity states and at large magnetic fields, allow us to identify the relevant spin states and to measure the spin decoherence rates and spin-photon coupling strengths. We find an anti-crossing between the resonator mode in the single photon limit and a singlet-triplet qubit with a spin-photon coupling strength of g/2π = 139 ± 4 MHz. This coherent coupling exceeds the resonator decay rate κ/2π = 19.8 ± 0.2 MHz and the qubit dephasing rate γ/2π = 116 ± 7 MHz, putting our system in the strong coupling regime.

Suggested Citation

  • J. H. Ungerer & A. Pally & A. Kononov & S. Lehmann & J. Ridderbos & P. P. Potts & C. Thelander & K. A. Dick & V. F. Maisi & P. Scarlino & A. Baumgartner & C. Schönenberger, 2024. "Strong coupling between a microwave photon and a singlet-triplet qubit," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45235-w
    DOI: 10.1038/s41467-024-45235-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45235-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45235-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. X. Mi & M. Benito & S. Putz & D. M. Zajac & J. M. Taylor & Guido Burkard & J. R. Petta, 2018. "A coherent spin–photon interface in silicon," Nature, Nature, vol. 555(7698), pages 599-603, March.
    2. A. J. Landig & J. V. Koski & P. Scarlino & U. C. Mendes & A. Blais & C. Reichl & W. Wegscheider & A. Wallraff & K. Ensslin & T. Ihn, 2018. "Coherent spin–photon coupling using a resonant exchange qubit," Nature, Nature, vol. 560(7717), pages 179-184, August.
    3. F. Borjans & X. G. Croot & X. Mi & M. J. Gullans & J. R. Petta, 2020. "Resonant microwave-mediated interactions between distant electron spins," Nature, Nature, vol. 577(7789), pages 195-198, January.
    4. K. D. Petersson & L. W. McFaul & M. D. Schroer & M. Jung & J. M. Taylor & A. A. Houck & J. R. Petta, 2012. "Circuit quantum electrodynamics with a spin qubit," Nature, Nature, vol. 490(7420), pages 380-383, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Cristóbal Lledó & Rémy Dassonneville & Adrien Moulinas & Joachim Cohen & Ross Shillito & Audrey Bienfait & Benjamin Huard & Alexandre Blais, 2023. "Cloaking a qubit in a cavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Jia-Shiang Chen & Kasidet Jing Trerayapiwat & Lei Sun & Matthew D. Krzyaniak & Michael R. Wasielewski & Tijana Rajh & Sahar Sharifzadeh & Xuedan Ma, 2023. "Long-lived electronic spin qubits in single-walled carbon nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45235-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.