IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60799-x.html
   My bibliography  Save this article

Cavity-magnon polaritons strongly coupled to phonons

Author

Listed:
  • Rui-Chang Shen

    (Zhejiang University)

  • Jie Li

    (Zhejiang University)

  • Yi-Ming Sun

    (Zhejiang University)

  • Wei-Jiang Wu

    (Zhejiang University)

  • Xuan Zuo

    (Zhejiang University)

  • Yi-Pu Wang

    (Zhejiang University)

  • Shi-Yao Zhu

    (Zhejiang University
    Zhejiang University
    Hefei National Laboratory)

  • J. Q. You

    (Zhejiang University
    Zhejiang University)

Abstract

Building hybrid quantum systems is a crucial step for realizing multifunctional quantum technologies, quantum information processing, and hybrid quantum networks. A functional hybrid quantum system requires strong coupling among its components, however, couplings between distinct physical systems are typically very weak. Here we demonstrate the realization of triple strong coupling in a polaromechanical hybrid system where polaritons, formed by strongly coupled ferromagnetic magnons and microwave photons, are further strongly coupled to phonons. We observe the corresponding polaromechanical normal-mode splitting. By significantly reducing the polariton decay rate via realizing coherent perfect absorption, we achieve a high polaromechanical cooperativity of 9.4 × 103. A quantum cooperativity much greater than unity is achievable at cryogenic temperatures, which would enable various quantum applications. Our results pave the way towards coherent quantum control of photons, magnons and phonons, and are a crucial step for building functional hybrid quantum systems based on magnons.

Suggested Citation

  • Rui-Chang Shen & Jie Li & Yi-Ming Sun & Wei-Jiang Wu & Xuan Zuo & Yi-Pu Wang & Shi-Yao Zhu & J. Q. You, 2025. "Cavity-magnon polaritons strongly coupled to phonons," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60799-x
    DOI: 10.1038/s41467-025-60799-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60799-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60799-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. J. Satzinger & Y. P. Zhong & H.-S. Chang & G. A. Peairs & A. Bienfait & Ming-Han Chou & A. Y. Cleland & C. R. Conner & É. Dumur & J. Grebel & I. Gutierrez & B. H. November & R. G. Povey & S. J. Whi, 2018. "Quantum control of surface acoustic-wave phonons," Nature, Nature, vol. 563(7733), pages 661-665, November.
    2. Alexander Sergeevich Kuznetsov & Klaus Biermann & Andres Alejandro Reynoso & Alejandro Fainstein & Paulo Ventura Santos, 2023. "Microcavity phonoritons – a coherent optical-to-microwave interface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Simon Gröblacher & Klemens Hammerer & Michael R. Vanner & Markus Aspelmeyer, 2009. "Observation of strong coupling between a micromechanical resonator and an optical cavity field," Nature, Nature, vol. 460(7256), pages 724-727, August.
    4. A. Wallraff & D. I. Schuster & A. Blais & L. Frunzio & R.- S. Huang & J. Majer & S. Kumar & S. M. Girvin & R. J. Schoelkopf, 2004. "Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics," Nature, Nature, vol. 431(7005), pages 162-167, September.
    5. J. D. Teufel & Dale Li & M. S. Allman & K. Cicak & A. J. Sirois & J. D. Whittaker & R. W. Simmonds, 2011. "Circuit cavity electromechanics in the strong-coupling regime," Nature, Nature, vol. 471(7337), pages 204-208, March.
    6. Yiwen Chu & Prashanta Kharel & Taekwan Yoon & Luigi Frunzio & Peter T. Rakich & Robert J. Schoelkopf, 2018. "Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator," Nature, Nature, vol. 563(7733), pages 666-670, November.
    7. E. Verhagen & S. Deléglise & S. Weis & A. Schliesser & T. J. Kippenberg, 2012. "Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode," Nature, Nature, vol. 482(7383), pages 63-67, February.
    8. Dengke Zhang & Xiao-Qing Luo & Yi-Pu Wang & Tie-Fu Li & J. Q. You, 2017. "Observation of the exceptional point in cavity magnon-polaritons," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    9. Mohammad Mirhosseini & Alp Sipahigil & Mahmoud Kalaee & Oskar Painter, 2020. "Superconducting qubit to optical photon transduction," Nature, Nature, vol. 588(7839), pages 599-603, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Alexander Sergeevich Kuznetsov & Klaus Biermann & Andres Alejandro Reynoso & Alejandro Fainstein & Paulo Ventura Santos, 2023. "Microcavity phonoritons – a coherent optical-to-microwave interface," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Ming-Han Chou & Hong Qiao & Haoxiong Yan & Gustav Andersson & Christopher R. Conner & Joel Grebel & Yash J. Joshi & Jacob M. Miller & Rhys G. Povey & Xuntao Wu & Andrew N. Cleland, 2025. "Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    4. Matija Tečer & Danko Radić, 2025. "Quantum Entanglement Between Charge Qubit and Mechanical Cat-States in Nanoelectromechanical System," Mathematics, MDPI, vol. 13(13), pages 1-26, June.
    5. Agnetta Y. Cleland & E. Alex Wollack & Amir H. Safavi-Naeini, 2024. "Studying phonon coherence with a quantum sensor," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Yulong Liu & Huanying Sun & Qichun Liu & Haihua Wu & Mika A. Sillanpää & Tiefu Li, 2025. "Degeneracy-breaking and long-lived multimode microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    7. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Felix M. Mayor & Sultan Malik & André G. Primo & Samuel Gyger & Wentao Jiang & Thiago P. M. Alegre & Amir H. Safavi-Naeini, 2025. "High photon-phonon pair generation rate in a two-dimensional optomechanical crystal," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    10. Christoforus Dimas Satrya & Yu-Cheng Chang & Aleksandr S. Strelnikov & Rishabh Upadhyay & Ilari K. Mäkinen & Joonas T. Peltonen & Bayan Karimi & Jukka P. Pekola, 2025. "Thermal spectrometer for superconducting circuits," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    11. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Germain Tobar & Sreenath K. Manikandan & Thomas Beitel & Igor Pikovski, 2024. "Detecting single gravitons with quantum sensing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Hu, Gaoke & Liu, Maoxin & Chen, Xiaosong, 2023. "Quantum phase transition and eigen microstate condensation in the quantum Rabi model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    14. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Hugo Molinares & Vitalie Eremeev, 2025. "Drive-Loss Engineering and Quantum Discord Probing of Synchronized Optomechanical Squeezing," Mathematics, MDPI, vol. 13(13), pages 1-21, July.
    18. Cheng Wang & Louise Banniard & Kjetil Børkje & Francesco Massel & Laure Mercier de Lépinay & Mika A. Sillanpää, 2024. "Ground-state cooling of a mechanical oscillator by a noisy environment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60799-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.